1
|
El Zein S, Melin MM, Suh GA, Tran NV, Rose PS, Berbari EF. Evaluation and Management of Pelvic Osteomyelitis in Stage IV Pressure Injuries: A Multidisciplinary Collaborative Approach. Clin Infect Dis 2024; 79:e11-e26. [PMID: 39325647 DOI: 10.1093/cid/ciae394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Indexed: 09/28/2024] Open
Abstract
Managing pelvic osteomyelitis (POM) in the setting of stage IV pressure injuries requires multidisciplinary evaluation as well as patient and caregiver engagement and is complicated by the lack of high-evidence data to guide best practices. In this review, we describe our approach to pressure injury and POM evaluation and management through multidisciplinary collaboration and highlight areas of future research that are necessary to enhance patient outcomes, reduce healthcare costs, and improve the quality of life of those affected by POM.
Collapse
Affiliation(s)
- Said El Zein
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew M Melin
- Gonda Vascular Center, Wound Clinic, Mayo Clinic, Rochester, Minnesota, USA
| | - Gina A Suh
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - N V Tran
- Department of Plastic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Peter S Rose
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Elie F Berbari
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
2
|
Trafelet N, Johnson S, Schroder J, Serena TE. Audit of Antimicrobial Prescribing Trends in 1447 Outpatient Wound Assessments: Baseline Rates and Impact of Bacterial Fluorescence Imaging. Diagnostics (Basel) 2024; 14:2034. [PMID: 39335713 PMCID: PMC11431003 DOI: 10.3390/diagnostics14182034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: In the field of wound care, the prescription of antibiotics and antimicrobials is haphazard and irrational, which has led to unchecked overprescribing. Recent Joint Commission guidelines mandate that hospital outpatient clinics develop and implement antimicrobial stewardship programs (ASPs). Yet few ASPs exist in wound clinics across the United States (US). Understanding baseline prescribing practices and rates in the US is a critical first step toward rational antimicrobial use and effective ASPs. Methods: This prospective study was conducted across eight outpatient wound clinics from January-December 2022. Data from consecutive patients attending single-time-point initial visits were recorded, including clinical findings, antimicrobial prescribing trends, and sampling practices. Results: A total of 1438 wounds were included; 964 were assessed by clinical examination (standard of care, SoC), and 474 by clinical examination plus fluorescence imaging. SoC patients were prescribed more concurrent medications on average than fluorescence patients (1.4 vs. 1 per patient). Prescriptions were preferentially topical in the fluorescence group (92% vs. 64%, p > 0.0001), and systemic antibiotics represented 36% of the single items prescribed under SoC (vs. 8% in fluorescence group p < 0.0001). Conclusions: Fluorescence imaging provided objective and actionable information at the bedside, which led to a decrease in the use of antibiotics. Real-time diagnostic technologies are essential in establishing a meaningful ASP.
Collapse
Affiliation(s)
- Nancy Trafelet
- SerenaGroup® Inc., 125 Cambridge Park Drive Suite 301, Cambridge, MA 02140, USA
| | - Scott Johnson
- Ascension Via Christi Wound Center, Wichita, KS 67214, USA
| | - Jill Schroder
- SerenaGroup® Inc., 125 Cambridge Park Drive Suite 301, Cambridge, MA 02140, USA
| | - Thomas E Serena
- SerenaGroup® Inc., 125 Cambridge Park Drive Suite 301, Cambridge, MA 02140, USA
| |
Collapse
|
3
|
Kelso MR, Jaros M. Improving Wound Healing and Infection Control in Long-term Care with Bacterial Fluorescence Imaging. Adv Skin Wound Care 2024; 37:471-479. [PMID: 39023985 DOI: 10.1097/asw.0000000000000177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
BACKGROUND High bacterial burden stalls wound healing and can quickly progress to infection and sepsis in complex, older-adult patients in long-term care (LTC) or skilled nursing facilities (SNFs). OBJECTIVE To investigate the outcomes of point-of-care fluorescence (FL) imaging (MolecuLight i:X) of bacterial loads, which are frequently asymptomatic, to inform customized wound treatment plans for patients in LTC/SNFs. METHODS In this retrospective pre/postinterventional cohort study, the authors compared the healing and infection-associated outcomes of 167 pressure injuries from 100 Medicare beneficiaries before and after implementation of FL imaging. RESULTS Most patient demographics and wound characteristics did not differ significantly between the standard-of-care (SOC; n = 71 wounds) and FL (n = 96 wounds) cohorts. Significantly more wounds (+71.0%) healed by 12 weeks in the FL cohort (38.5%) versus the SoC cohort (22.5%). Wounds in the FL cohort also healed 27.7% faster (-4.8 weeks), on average, and were 1.4 times more likely to heal per Kaplan-Meier survival analysis (hazard ratio = 1.40; 95% CI, 0.90-2.12). Infection-related complications decreased by 75.3% in the FL cohort, and a significant shift from largely systemic to topical antibiotic prescribing was evidenced. CONCLUSIONS Fluorescence-imaging-guided management of wounds significantly improved healing and infection outcomes in highly complex and multimorbid patients in LTC/SNFs. Proactive bacterial infection management via local treatments was enabled by earlier, objective detection. These reported outcome improvements are comparable to randomized controlled trials and cohort studies from less compromised, selectively controlled outpatient populations. Fluorescence imaging supports proactive monitoring and management of planktonic and biofilm-encased bacteria, improving patient care in a complex, real-world setting.
Collapse
Affiliation(s)
- Martha R Kelso
- Martha R. Kelso, RN, CWHS, HBOT, is Founder and Chief Executive Officer, Wound Care Plus LLC, Blue Springs, Missouri, USA. Mark Jaros, PhD, is Senior Vice President, Summit Analytical, Denver, Colorado, USA
| | | |
Collapse
|
4
|
Huang SW, Wu YF, Ahmed T, Pan SC, Cheng CM. Point-of-care detection devices for wound care and monitoring. Trends Biotechnol 2024; 42:74-90. [PMID: 37563037 DOI: 10.1016/j.tibtech.2023.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023]
Abstract
Healthcare resources are heavily burdened by infections that impede the wound-healing process. A wide range of advanced technologies have been developed for detecting and quantifying infection biomarkers. Finding a timely, accurate, non-invasive diagnostic alternative that does not require a high level of training is a critical step toward arresting common clinical patterns of wound health decline. There is growing interest in the development of innovative diagnostics utilizing a variety of emerging technologies, and new biomarkers have been investigated as potential indicators of wound infection. In this review, we summarize diagnostics available for wound infection, including those used in clinics and still under development.
Collapse
Affiliation(s)
- Shu-Wei Huang
- Department of Orthopedic Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Feng Wu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan; Division of Plastic Surgery, Department of Surgery, National Taiwan University Hospital, Hsin-Chu Branch, Hsinchu, Taiwan; International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu, Taiwan
| | - Tanvir Ahmed
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Shin-Chen Pan
- Department of Surgery, Section of Plastic and Reconstructive Surgery, National Cheng Kung University Hospital, College of Medicine, International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan.
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
5
|
Paleczny J, Brożyna M, Dudek B, Woytoń A, Chodaczek G, Szajnik M, Junka A. Culture Shock: An Investigation into the Tolerance of Pathogenic Biofilms to Antiseptics in Environments Resembling the Chronic Wound Milieu. Int J Mol Sci 2023; 24:17242. [PMID: 38139071 PMCID: PMC10744066 DOI: 10.3390/ijms242417242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Credible assessment methods must be applied to evaluate antiseptics' in vitro activity reliably. Studies indicate that the medium for biofilm culturing should resemble the conditions present at the site of infection. We cultured S. aureus, S. epidermidis, P. aeruginosa, C. albicans, and E. coli biofilms in IVWM (In Vitro Wound Milieu)-the medium reflecting wound milieu-and were compared to the ones cultured in the laboratory microbiological Mueller-Hinton (MH) medium. We analyzed and compared crucial biofilm characteristics and treated microbes with polyhexamethylene biguanide hydrochloride (PHMB), povidone-iodine (PVP-I), and super-oxidized solution with hypochlorites (SOHs). Biofilm biomass of S. aureus and S. epidermidis was higher in IVWM than in MH medium. Microbes cultured in IVWM exhibited greater metabolic activity and thickness than in MH medium. Biofilm of the majority of microbial species was more resistant to PHMB and PVP-I in the IVWM than in the MH medium. P. aeruginosa displayed a two-fold lower MBEC value of PHMB in the IVWM than in the MH medium. PHMB was more effective in the IVWM than in the MH medium against S. aureus biofilm cultured on a biocellulose carrier (instead of polystyrene). The applied improvement of the standard in vitro methodology allows us to predict the effects of treatment of non-healing wounds with specific antiseptics.
Collapse
Affiliation(s)
- Justyna Paleczny
- Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (M.B.); (B.D.); (A.W.)
| | - Malwina Brożyna
- Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (M.B.); (B.D.); (A.W.)
| | - Bartłomiej Dudek
- Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (M.B.); (B.D.); (A.W.)
| | - Aleksandra Woytoń
- Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (M.B.); (B.D.); (A.W.)
| | - Grzegorz Chodaczek
- Bioimaging Laboratory, Lukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wroclaw, Poland;
| | - Marta Szajnik
- Faculty of Medicine, Lazarski University, 02-662 Warsaw, Poland;
| | - Adam Junka
- Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (M.B.); (B.D.); (A.W.)
| |
Collapse
|
6
|
Jacob A, Jones LM, Abdo RJ, Cruz‐Schiavone SF, Skerker R, Caputo WJ, Krehbiel N, Moyer‐Harris AK, McAtee A, Baker I, Gray MD, Rennie MY. Lights, fluorescence, action-Influencing wound treatment plans including debridement of bacteria and biofilms. Int Wound J 2023; 20:3279-3288. [PMID: 37132372 PMCID: PMC10502265 DOI: 10.1111/iwj.14208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/04/2023] Open
Abstract
High bacterial loads within chronic wounds increase the risk of infection and complication. Detection and localization of bacterial loads through point-of-care fluorescence (FL) imaging can objectively inform and support bacterial treatment decisions. This single time-point, retrospective analysis describes the treatment decisions made on 1000 chronic wounds (DFUs, VLUs, PIs, surgical wounds, burns, and others) at 211 wound-care facilities across 36 US states. Clinical assessment findings and treatment plans derived from them, as well as subsequent FL-imaging (MolecuLight®) findings and any associated treatment plan changes, were recorded for analysis. FL signals indicating elevated bacterial loads were observed in 701 wounds (70.8%), while only 293 (29.6%) showed signs/symptoms of infection. After FL-imaging, treatment plans changed in 528 wounds as follows: more extensive debridement (18.7%), more extensive hygiene (17.2%), FL-targeted debridement (17.2%), new topical therapies (10.1%), new systemic antibiotic prescriptions (9.0%), FL-guided sampling for microbiological analysis (6.2%), and changes in dressing selection (3.2%). These real-world findings of asymptomatic bacterial load/biofilm incidence, and of the frequent treatment plan changes post-imaging, are in accordance with clinical trial findings using this technology. These data, from a range of wound types, facilities, and clinician skill sets, suggest that point-of-care FL-imaging information improves bacterial infection management.
Collapse
|
7
|
Serena TE, Simman R, Wahab N, Cole W. Proceedings of the Leaders in Wound Healing conference. J Wound Care 2023; 32:S5-S11. [PMID: 37682797 DOI: 10.12968/jowc.2023.32.sup9.s5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
SerenaGroup Research Foundation, New Orleans, 17-19 April 2023.
Collapse
|
8
|
Ramirez-GarciaLuna JL, Martinez-Jimenez MA, Fraser RDJ, Bartlett R, Lorincz A, Liu Z, Saiko G, Berry GK. Is my wound infected? A study on the use of hyperspectral imaging to assess wound infection. Front Med (Lausanne) 2023; 10:1165281. [PMID: 37692790 PMCID: PMC10483069 DOI: 10.3389/fmed.2023.1165281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/13/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Clinical signs and symptoms (CSS) of infection are a standard part of wound care, yet they can have low specificity and sensitivity, which can further vary due to clinician knowledge, experience, and education. Wound photography is becoming more widely adopted to support wound care. Thermography has been studied in the medical literature to assess signs of perfusion and inflammation for decades. Bacterial fluorescence has recently emerged as a valuable tool to detect a high bacterial load within wounds. Combining these modalities offers a potential objective screening tool for wound infection. Methods A multi-center prospective study of 66 outpatient wound care patients used hyperspectral imaging to collect visible light, thermography, and bacterial fluorescence images. Wounds were assessed and screened using the International Wound Infection Institute (IWII) checklist for CSS of infection. Principal component analysis was performed on the images to identify wounds presenting as infected, inflamed, or non-infected. Results The model could accurately predict all three wound classes (infected, inflamed, and non-infected) with an accuracy of 74%. They performed best on infected wounds (100% sensitivity and 91% specificity) compared to non-inflamed (sensitivity 94%, specificity 70%) and inflamed wounds (85% sensitivity, 77% specificity). Discussion Combining multiple imaging modalities enables the application of models to improve wound assessment. Infection detection by CSS is vulnerable to subjective interpretation and variability based on clinicians' education and skills. Enabling clinicians to use point-of-care hyperspectral imaging may allow earlier infection detection and intervention, possibly preventing delays in wound healing and minimizing adverse events.
Collapse
Affiliation(s)
| | | | - Robert D. J. Fraser
- Swift Medical, Toronto, ON, Canada
- Arthur Labatt School of Nursing, Northwestern University, London, ON, Canada
| | | | | | | | - Gennadi Saiko
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | - Gregory K. Berry
- Department of Surgery, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
9
|
Derwin R, Patton D, Strapp H, Moore Z. The effect of inflammation management on pH, temperature, and bacterial burden. Int Wound J 2023; 20:1118-1129. [PMID: 36251505 PMCID: PMC10031221 DOI: 10.1111/iwj.13970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/28/2022] Open
Abstract
The aim of this feasibility study was to investigate the impact of inflammation management on wound pH, temperature, and bacterial burden, using the principles of TIME and Wound Bed Preparation. A quantitative non-comparative, prospective, descriptive observational design. Following ethical approval, 26 participants with 27 wounds of varying aetiologies were observed twice weekly for 2 weeks. Wounds were treated with cleansing, repeated sharp debridement, and topical cadexomer iodine. Wound pH (pH indicator strips), temperature (infrared camera), bacterial burden (fluorescence imaging) and size (ruler method) was monitored at each visit. The mean age of all participants was 47 years (SD: 20.3 years), and 79% (n = 19) were male, and most wounds were acute (70%; n = 19) and included surgical and trauma wounds, the remaining (30%; n = 8) were chronic and included vascular ulcers and non-healing surgical wounds. Mean wound duration was 53.88 days (SD: 64.49 days). Over the follow up period, pH values ranged from 6 to 8.7, temperature (centre spot) ranged from 28.4°C to 36.4°C and there was an average 39% reduction in wound size. Inflammation management had a positive effect on pH, temperature, bacterial burden, and wound size. This study demonstrated that it was feasible to practice inflammation management using a structured approach to enhance wound outcomes.
Collapse
Affiliation(s)
- Rosemarie Derwin
- School of Nursing and Midwifery, Faculty of Medicine and HealthRoyal College of Surgeons in Ireland (RCSI), University of Medicine and Health SciencesDublinIreland
| | - Declan Patton
- School of Nursing and Midwifery, Faculty of Medicine and HealthRoyal College of Surgeons in Ireland (RCSI), University of Medicine and Health SciencesDublinIreland
- Department of NursingFakeeh College of Health SciencesJeddahSaudi Arabia
- Faculty of Science, Medicine and HealthUniversity of WollongongWollongongNew South WalesAustralia
| | - Helen Strapp
- Department of SurgeryTallaght University HospitalDublinIreland
| | - Zena Moore
- School of Nursing and Midwifery, Faculty of Medicine and HealthRoyal College of Surgeons in Ireland (RCSI), University of Medicine and Health SciencesDublinIreland
- School of Nursing and Midwifery, Griffith UniversityBrisbaneQueenslandAustralia
- School of Health Sciences, Faculty of Life and Health Sciences Ulster UniversityColeraineUK
- School of Nursing and MidwiferyCardiff UniversityCardiffUK
- Department of NursingFakeeh College for Medical SciencesJeddahKingdom of Saudi Arabia
- Department of Public HealthFaculty of Medicine and Health Sciences, Ghent UniversityGhentBelgium
- Departmnet of NursingLida InstituteShanghaiChina
| |
Collapse
|
10
|
Armstrong DG, Edmonds ME, Serena TE. Point-of-care fluorescence imaging reveals extent of bacterial load in diabetic foot ulcers. Int Wound J 2023; 20:554-566. [PMID: 36708275 PMCID: PMC9885466 DOI: 10.1111/iwj.14080] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 01/29/2023] Open
Abstract
Elevated levels of bacteria, including biofilm, increase the risk of chronic wound infection and inhibit healing. Addressing asymptomatic high bacterial loads is challenged by a lack of clinical terminology and diagnostic tools. This post-hoc multicenter clinical trial analysis of 138 diabetic foot ulcers investigates fluorescence (FL)-imaging role in detecting biofilm-encased and planktonic bacteria in wounds at high loads. The sensitivity and specificity of clinical assessment and FL-imaging were compared across bacterial loads of concern (104 -109 CFU/g). Quantitative tissue culture confirmed the total loads. Bacterial presence was confirmed in 131/138 ulcers. Of these, 93.9% had loads >104 CFU/g. In those wounds, symptoms of infection were largely absent and did not correlate with, or increase proportionately with, bacterial loads at any threshold. FL-imaging increased sensitivity for the detection of bacteria across loads 104 -109 (P < .0001), peaking at 92.6% for >108 CFU/g. Imaging further showed that 84.2% of ulcers contained high loads in the periwound region. New terminology, chronic inhibitory bacterial load (CIBL), describes frequently asymptomatic, high bacterial loads in diabetic ulcers and periwound tissues, which require clinical intervention to prevent sequelae of infection. We anticipate this will spark a paradigm shift in assessment and management, enabling earlier intervention along the bacterial-infection continuum and supporting improved wound outcomes.
Collapse
Affiliation(s)
- David G. Armstrong
- Department of SurgeryKeck School of Medicine of University of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | | |
Collapse
|
11
|
Ahmad N. In Vitro and In Vivo Characterization Methods for Evaluation of Modern Wound Dressings. Pharmaceutics 2022; 15:42. [PMID: 36678671 PMCID: PMC9864730 DOI: 10.3390/pharmaceutics15010042] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/10/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
Chronic wound management represents a major challenge in the healthcare sector owing to its delayed wound-healing process progression and huge financial burden. In this regard, wound dressings provide an appropriate platform for facilitating wound healing for several decades. However, adherent traditional wound dressings do not provide effective wound healing for highly exudating chronic wounds and need the development of newer and innovative wound dressings to facilitate accelerated wound healing. In addition, these dressings need frequent changing, resulting in more pain and discomfort. In order to overcome these issues, a wide range of affordable and innovative modern wound dressings have been developed and explored recently to accelerate and improve the wound healing process. However, a comprehensive understanding of various in vitro and in vivo characterization methods being utilized for the evaluation of different modern wound dressings is lacking. In this context, an overview of modern dressings and their complete in vitro and in vivo characterization methods for wound healing assessment is provided in this review. Herein, various emerging modern wound dressings with advantages and challenges have also been reviewed. Furthermore, different in vitro wound healing assays and in vivo wound models being utilized for the evaluation of wound healing progression and wound healing rate using wound dressings are discussed in detail. Finally, a summary of modern wound dressings with challenges and the future outlook is highlighted.
Collapse
Affiliation(s)
- Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
| |
Collapse
|
12
|
Caputo WJ, Monterosa P, Beggs D. Antibiotic Misuse in Wound Care: Can Bacterial Localization through Fluorescence Imaging Help? Diagnostics (Basel) 2022; 12:3207. [PMID: 36553214 PMCID: PMC9778012 DOI: 10.3390/diagnostics12123207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
(1) Background: Systemic antibiotic use in chronic wounds is alarmingly high worldwide. Between 53% to 71% of patients are prescribed at least one course per chronic wound. Systemic antibiotic use should follow antibiotic stewardship guidelines and ought to be reserved for situations where their use is deemed supported by clinical indications. Unfortunately, in the field of wound care, indiscriminate and often inadequate use of systemic antibiotics is leading to both patient complications and worsening antibiotic resistance rates. Implementing novel tools that help clinicians prevent misuse or objectively determine the true need for systemic antibiotics is essential to reduce prescribing rates. (2) Methods: We present a compendium of available systemic antibiotic prescription rates in chronic wounds. The impact of various strategies used to improve these rates, as well as preliminary data on the impact of implementing fluorescence imaging technology to finesse wound status diagnosis, are presented. (3) Results: Interventions including feedback from wound care surveillance and treatment data registries as well as better diagnostic strategies can ameliorate antibiotic misuse. (4) Conclusions: Interventions that mitigate unnecessary antibiotic use are needed. Effective strategies include those that raise awareness of antibiotic overprescribing and those that enhance diagnosis of infection, such as fluorescence imaging.
Collapse
Affiliation(s)
- Wayne J. Caputo
- Director of the Wound Care Center at Clara Maass Medical Center, Belleville, NJ 07109, USA
| | | | - Donald Beggs
- Infectious Disease, Clara Maass Medical Center, Belleville, NJ 07109, USA
| |
Collapse
|
13
|
Serena TE, Gould L, Ousey K, Kirsner RS. Reliance on Clinical Signs and Symptoms Assessment Leads to Misuse of Antimicrobials: Post hoc Analysis of 350 Chronic Wounds. Adv Wound Care (New Rochelle) 2022; 11:639-649. [PMID: 34714159 PMCID: PMC9527054 DOI: 10.1089/wound.2021.0146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/09/2021] [Indexed: 01/29/2023] Open
Abstract
Objectives: Bacteria frequently impede wound healing and cause infection. Clinicians rely on clinical signs and symptoms (CSS) to assess for bacteria at the point of care, and inform prescription of antibiotics and other antimicrobials. Yet, robust evidence suggests that CSS has poor sensitivity for detection of problematic bacterial burden and infection, hindering antimicrobial stewardship efforts. This study evaluated CSS-based antimicrobial prescribing practices across 14 wound care centers. Approach: Data were analyzed from the fluorescence assessment and guidance (FLAAG) trial, a study of 350 chronic wounds across 20 clinicians. Clinicians reviewed patient history and assessed for CSS using the International Wound Infection Institute infection checklist. Wounds with >3 criteria or any overwhelming symptom were considered CSS+. Bacterial levels were confirmed with quantitative tissue culture of wound biopsies. Results: Antimicrobials (including dressings, topicals, and systemic antibiotics) were prescribed at a similar rate for wounds identified as CSS+ (75.0%) and CSS- (72.8%, p = 0.76). Antimicrobial dressings, the most frequently prescribed antimicrobial, were prescribed at a similar rate for CSS+ (83.3%) and CSS- (89.5%, p = 0.27) wounds. In 33.3% of patients prescribed systemic antibiotics, no CSS were present. Prescribing patterns did not correlate with bacterial load. Innovation: This study is the first to evaluate antimicrobial prescribing trends in a large, multisite cohort of chronic wound patients. Conclusions: Reliance on CSS to diagnose clinically significant bacterial burden in chronic wounds leads to the haphazard use of antimicrobials. Improved methods of identifying bacterial burden and infection are needed to enhance antimicrobial stewardship efforts in wound care. Clinicaltrials.gov ID. NCT03540004.
Collapse
Affiliation(s)
- Thomas E Serena
- SerenaGroup® Research Foundation, Cambridge, Massachusetts, USA
| | - Lisa Gould
- South Shore Health Department of Surgery (or Brown Alpert Department of Medicine), Weymouth, Massachusetts, USA
| | - Karen Ousey
- School of Human and Health Sciences, University of Huddersfield, West Yorkshire, United Kingdom
| | - Robert S Kirsner
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
14
|
|
15
|
van de Vyver M, Idensohn PJ, Niesler CU. A regenerative approach to the pharmacological management of hard-to-heal wounds. Biochimie 2022; 194:67-78. [PMID: 34982983 DOI: 10.1016/j.biochi.2021.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/27/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022]
Abstract
A wound is considered hard-to-heal when, despite the appropriate clinical analysis and intervention, the wound area reduces by less than a third at four weeks and complete healing fails to occur within 12 weeks. The most prevalent hard-to-heal wounds are associated with underlying metabolic diseases or vascular insufficiency and include arterial, venous, pressure and diabetic foot ulcers. Their common features include an abnormal immune response and extended inflammatory phase, a subdued proliferation phase due to cellular insufficiencies and finally an almost non-existent remodeling phase. Advances in wound care technology, tested in both pre-clinical models and clinical trials, have paved the way for improved treatment options, focused on regeneration. These interventions have been shown to limit the extent of ongoing inflammatory damage, decrease bacterial load, promote angiogenesis and deposition of granulation tissue, and stimulate keratinocyte migration thereby promoting re-epithelialization in these wounds. The current review discusses these hard-to-heal wounds in the context of their underlying pathology and potential of advanced treatment options, which if applied promptly as a standard of care, could reduce morbidity, promote quality of life, and alleviate the burden on a strained health system.
Collapse
Affiliation(s)
- M van de Vyver
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa.
| | - P J Idensohn
- CliniCare Medical Centre, Ballito, KwaZulu-Natal, South Africa; School of Nursing, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - C U Niesler
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu Natal, Scottsville, South Africa
| |
Collapse
|
16
|
Sandy-Hodgetts K, Andersen CA, Al-Jalodi O, Serena L, Teimouri C, Serena TE. Uncovering the high prevalence of bacterial burden in surgical site wounds with point-of-care fluorescence imaging. Int Wound J 2021; 19:1438-1448. [PMID: 34962067 PMCID: PMC9493216 DOI: 10.1111/iwj.13737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/01/2021] [Indexed: 01/21/2023] Open
Abstract
Detection of bacterial burden within or near surgical wounds is critical to reducing the occurrence of surgical site infection (SSI). A distinct lack of reliable methods to identify postoperative bioburden has forced reliance on clinical signs and symptoms of infection (CSS). As a result, infection management has been reactive, rather than proactive. Fluorescence imaging of bacterial burden (FL) is positioned to potentially flip that paradigm. This post hoc analysis evaluated 58 imaged and biopsied surgical site wounds from the multi‐centre fluorescence imaging assessment and guidance clinical trial. Diagnostic accuracy measures of CSS and FL were evaluated. A reader study investigated the impact of advanced image interpretation experience on imaging sensitivity. Forty‐four of fifty‐eight surgical site wounds (75.8%) had bacterial loads >104 CFU/g (median = 3.11 × 105 CFU/g); however, only 3 of 44 were CSS positive (sensitivity of 6.8%). FL improved sensitivity of bacterial detection by 5.7‐fold compared with CSS alone (P = .0005). Sensitivity improved by 11.3‐fold over CSS among clinicians highly experienced with FL interpretation (P < .0001). Surgical sites that reach the stage of referral to a wound specialist frequently harbour asymptomatic high bacterial loads that delay healing and increase infection risk. Advanced imaging of pathological bacterial burden improves surgical site monitoring and may reduce the rate of SSIs.
Collapse
Affiliation(s)
- Kylie Sandy-Hodgetts
- School of Biomedical Sciences, Pathology and Laboratory Science, University of Western Australia, Perth, Western Australia, Australia.,Centre for Molecular Medicine & Innovative Therapeutics, Murdoch University, Murdoch, Western Australia, Australia
| | - Charles A Andersen
- Wound Care Clinic, Madigan Army Medical Center, Joint Base Lewis-McChord, Renton, Washington, USA
| | - Omar Al-Jalodi
- SerenaGroup Research Foundation, Cambridge, Massachusetts, USA
| | - Laura Serena
- SerenaGroup Research Foundation, Cambridge, Massachusetts, USA
| | | | - Thomas E Serena
- SerenaGroup Research Foundation, Cambridge, Massachusetts, USA
| |
Collapse
|
17
|
Andersen CA, McLeod K, Steffan R. Diagnosis and treatment of the invasive extension of bacteria (cellulitis) from chronic wounds utilising point-of-care fluorescence imaging. Int Wound J 2021; 19:996-1008. [PMID: 34609047 PMCID: PMC9284649 DOI: 10.1111/iwj.13696] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
Early diagnosis of wound‐related cellulitis is challenging as many classical signs and symptoms of infection (erythema, pain, tenderness, or fever) may be absent. In addition, other conditions (ie, chronic stasis dermatitis) may present with similar clinical findings. Point‐of‐care fluorescence imaging detects elevated bacterial burden in and around wounds with high sensitivity. This prospective observational study examined the impact of incorporating fluorescence imaging into standard care for diagnosis and management of wound‐related cellulitis. Two hundred thirty‐six patients visiting an outpatient wound care centre between January 2020 and April 2021 were included in this study. Patients underwent routine fluorescence scans for bacteria (range: 1‐48 scans/patient). Wound‐related cellulitis was diagnosed in 6.4% (15/236) of patients. In these patients, fluorescence scans showed an irregular pattern of red (bacterial) fluorescence extending beyond the wound bed and periwound that could not be removed through cleansing or debridement, indicating the invasive extension of bacteria (wound‐related cellulitis). Point‐of‐care identification facilitated rapid initiation of treatments (source control and antibiotics, when warranted) that resolved the fluorescence. No patients had worsening of cellulitis requiring intravenous antibiotics and/or hospitalisation. These findings demonstrate the utility of point‐of‐care fluorescence imaging for efficient detection and proactive, targeted management of wound‐related cellulitis.
Collapse
Affiliation(s)
- Charles A Andersen
- Vascular/Endovascular/Limb Preservation Surgery Service, Madigan Army Medical Center, Joint Base Lewis-McChord, Washington, USA
| | - Katherine McLeod
- Vascular/Endovascular/Limb Preservation Surgery Service, Madigan Army Medical Center, Joint Base Lewis-McChord, Washington, USA
| | - Rowena Steffan
- Vascular/Endovascular/Limb Preservation Surgery Service, Madigan Army Medical Center, Joint Base Lewis-McChord, Washington, USA
| |
Collapse
|