1
|
Ayodele O, Fertek D, Evuarherhe O, Siffel C, Audi J, Yee KS, Burton BK. A Systematic Literature Review on the Global Status of Newborn Screening for Mucopolysaccharidosis II. Int J Neonatal Screen 2024; 10:71. [PMID: 39449359 PMCID: PMC11503380 DOI: 10.3390/ijns10040071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024] Open
Abstract
A systematic literature review was conducted to determine the global status of newborn screening (NBS) for mucopolysaccharidosis (MPS) II (Hunter syndrome; OMIM 309900). Electronic databases were searched in July 2023 for articles referencing NBS for lysosomal storage diseases: 53 featured MPS II. Until recently, only Taiwan and two US states (Illinois and Missouri) formally screened newborns for MPS II, although pilot programs have been conducted elsewhere (Japan, New York, and Washington). In 2022, MPS II was added to the US Recommended Uniform Screening Panel, with increased uptake of NBS anticipated across the USA. While the overall MPS II birth prevalence, determined from NBS initiatives, was higher than in previous reports, it was lower in the USA (approximately 1 in 73,000 according to recent studies in Illinois and Missouri) than in Asia (approximately 1 in 15,000 in Japan). NBS programs typically rely on tandem mass spectrometry quantification of iduronate-2-sulfatase activity for first-tier testing. Diagnosis is often confirmed via molecular genetic testing and/or biochemical testing but may be complicated by factors such as pseudodeficiency alleles and variants of unknown significance. Evidence relating to MPS II NBS is lacking outside Taiwan and the USA. Although broad benefits of NBS are recognized, few studies specifically explored the perspectives of families of children with MPS II.
Collapse
Affiliation(s)
- Olulade Ayodele
- Takeda Development Center Americas, Inc., Lexington, MA 02421, USA
| | - Daniel Fertek
- Takeda Pharmaceuticals International AG, 8152 Zurich, Switzerland
| | | | - Csaba Siffel
- Takeda Development Center Americas, Inc., Lexington, MA 02421, USA
- College of Allied Health Sciences, Augusta University, Augusta, GA 30912, USA
| | - Jennifer Audi
- Takeda Pharmaceuticals International AG, 8152 Zurich, Switzerland
| | - Karen S. Yee
- Takeda Development Center Americas, Inc., Cambridge, MA 02142, USA
| | - Barbara K. Burton
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
2
|
Wiśniewska K, Wolski J, Żabińska M, Szulc A, Gaffke L, Pierzynowska K, Węgrzyn G. Mucopolysaccharidosis Type IIIE: A Real Human Disease or a Diagnostic Pitfall? Diagnostics (Basel) 2024; 14:1734. [PMID: 39202222 PMCID: PMC11353205 DOI: 10.3390/diagnostics14161734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Mucopolysaccharidoses (MPS) comprise a group of 12 metabolic disorders where defects in specific enzyme activities lead to the accumulation of glycosaminoglycans (GAGs) within lysosomes. This classification expands to 13 when considering MPS IIIE. This type of MPS, associated with pathogenic variants in the ARSG gene, has thus far been described only in the context of animal models. However, pathogenic variants in this gene also occur in humans, but are linked to a different disorder, Usher syndrome (USH) type IV, which is sparking increasing debate. This paper gathers, discusses, and summarizes arguments both for and against classifying dysfunctions of arylsulfatase G (due to pathogenic variants in the ARSG gene) in humans as another subtype of MPS, called MPS IIIE. Specific difficulties in diagnostics and the classification of some inherited metabolic diseases are also highlighted and discussed.
Collapse
Affiliation(s)
- Karolina Wiśniewska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| | - Jakub Wolski
- Psychiatry Ward, 7th Navy Hospital in Gdansk, Polanki 117, 80-305 Gdansk, Poland;
| | - Magdalena Żabińska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| | - Aneta Szulc
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| |
Collapse
|
3
|
Li JW, Mao SJ, Chao YQ, Hu CX, Qian YJ, Dai YL, Huang K, Shen Z, Zou CC. Application of tandem mass spectrometry in the screening and diagnosis of mucopolysaccharidoses. Orphanet J Rare Dis 2024; 19:179. [PMID: 38685110 PMCID: PMC11059687 DOI: 10.1186/s13023-024-03195-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
Mucopolysaccharidoses (MPSs) are caused by a deficiency in the enzymes needed to degrade glycosaminoglycans (GAGs) in the lysosome. The storage of GAGs leads to the involvement of several systems and even to the death of the patient. In recent years, an increasing number of therapies have increased the treatment options available to patients. Early treatment is beneficial in improving the prognosis, but children with MPSs are often delayed in their diagnosis. Therefore, there is an urgent need to develop a method for early screening and diagnosis of the disease. Tandem mass spectrometry (MS/MS) is an analytical method that can detect multiple substrates or enzymes simultaneously. GAGs are reliable markers of MPSs. MS/MS can be used to screen children at an early stage of the disease, to improve prognosis by treating them before symptoms appear, to evaluate the effectiveness of treatment, and for metabolomic analysis or to find suitable biomarkers. In the future, MS/MS could be used to further identify suitable biomarkers for MPSs for early diagnosis and to detect efficacy.
Collapse
Affiliation(s)
- Jing-Wen Li
- Department of Endocrinology, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Shao-Jia Mao
- Department of Endocrinology, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Yun-Qi Chao
- Department of Endocrinology, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Chen-Xi Hu
- Department of Endocrinology, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Yan-Jie Qian
- Department of Endocrinology, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Yang-Li Dai
- Department of Endocrinology, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Ke Huang
- Department of Endocrinology, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Zheng Shen
- Lab Center, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Chao-Chun Zou
- Department of Endocrinology, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
4
|
Gómez-Cebrián N, Gras-Colomer E, Poveda Andrés JL, Pineda-Lucena A, Puchades-Carrasco L. Omics-Based Approaches for the Characterization of Pompe Disease Metabolic Phenotypes. BIOLOGY 2023; 12:1159. [PMID: 37759559 PMCID: PMC10525434 DOI: 10.3390/biology12091159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023]
Abstract
Lysosomal storage disorders (LSDs) constitute a large group of rare, multisystemic, inherited disorders of metabolism, characterized by defects in lysosomal enzymes, accessory proteins, membrane transporters or trafficking proteins. Pompe disease (PD) is produced by mutations in the acid alpha-glucosidase (GAA) lysosomal enzyme. This enzymatic deficiency leads to the aberrant accumulation of glycogen in the lysosome. The onset of symptoms, including a variety of neurological and multiple-organ pathologies, can range from birth to adulthood, and disease severity can vary between individuals. Although very significant advances related to the development of new treatments, and also to the improvement of newborn screening programs and tools for a more accurate diagnosis and follow-up of patients, have occurred over recent years, there exists an unmet need for further understanding the molecular mechanisms underlying the progression of the disease. Also, the reason why currently available treatments lose effectiveness over time in some patients is not completely understood. In this scenario, characterization of the metabolic phenotype is a valuable approach to gain insights into the global impact of lysosomal dysfunction, and its potential correlation with clinical progression and response to therapies. These approaches represent a discovery tool for investigating disease-induced modifications in the complete metabolic profile, including large numbers of metabolites that are simultaneously analyzed, enabling the identification of novel potential biomarkers associated with these conditions. This review aims to highlight the most relevant findings of recently published omics-based studies with a particular focus on describing the clinical potential of the specific metabolic phenotypes associated to different subgroups of PD patients.
Collapse
Affiliation(s)
- Nuria Gómez-Cebrián
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Elena Gras-Colomer
- Pharmacy Department, Hospital Manises of Valencia, 46940 Valencia, Spain
| | | | - Antonio Pineda-Lucena
- Molecular Therapeutics Program, Centro de Investigación Médica Aplicada, 31008 Pamplona, Spain
| | | |
Collapse
|
5
|
Khan SA, Nidhi FNU, Amendum PC, Tomatsu S. Detection of Glycosaminoglycans in Biological Specimens. Methods Mol Biol 2023; 2619:3-24. [PMID: 36662458 PMCID: PMC10199356 DOI: 10.1007/978-1-0716-2946-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Proteoglycans (PGs) are macromolecules formed by a protein backbone to which one or more glycosaminoglycan (GAG) side chains are covalently attached. Most PGs are present in connective tissues, cell surfaces, and intracellular compartments. The major biological function of PGs derives from the GAG component of the molecule, which is involved in cell growth and proliferation, embryogenesis, maintenance of tissue hydration, and interactions of the cells via receptors. PGs are categorized into four groups based on their cellular and subcellular localization, including cell surfaces and extracellular, intracellular, and pericellular locations. GAGs are a crucial component of PGs involved in various physiological and pathological processes. GAGs also serve as biomarkers of metabolic diseases such as mucopolysaccharidoses and mucolipidoses. Detection of specific GAGs in various biological fluids helps manage various genetic metabolic disorders before it causes irreversible damage to the patient (Amendum et al., Diagnostics (Basel) 11(9):1563, 2021). There are several methods for detecting GAGs; this chapter focuses on measuring GAGs using enzyme-linked immunosorbent assay, liquid chromatographic tandem mass spectrometry, and automated high-throughput mass spectrometry.
Collapse
Affiliation(s)
- Shaukat A Khan
- Department of Biomedical Research, Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE, USA
| | - F N U Nidhi
- Department of Biomedical Research, Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Paige C Amendum
- Department of Biomedical Research, Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE, USA
| | - Shunji Tomatsu
- Department of Biomedical Research, Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE, USA.
- Department of Pediatrics, Shimane University, Izumo, Japan.
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan.
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Abstract
Mucopolysaccharidosis type I (MPS I), a lysosomal storage disease caused by a deficiency of α-L-iduronidase, leads to storage of the glycosaminoglycans, dermatan sulfate and heparan sulfate. Available therapies include enzyme replacement and hematopoietic stem cell transplantation. In the last two decades, newborn screening (NBS) has focused on early identification of the disorder, allowing early intervention and avoiding irreversible manifestations. Techniques developed and optimized for MPS I NBS include tandem mass-spectrometry, digital microfluidics, and glycosaminoglycan quantification. Several pilot studies have been conducted and screening programs have been implemented worldwide. NBS for MPS I has been established in Taiwan, the United States, Brazil, Mexico, and several European countries. All these programs measure α-L-iduronidase enzyme activity in dried blood spots, although there are differences in the analytical strategies employed. Screening algorithms based on published studies are discussed. However, some limitations remain: one is the high rate of false-positive results due to frequent pseudodeficiency alleles, which has been partially solved using post-analytical tools and second-tier tests; another involves the management of infants with late-onset forms or variants of uncertain significance. Nonetheless, the risk-benefit ratio is favorable. Furthermore, long-term follow-up of patients detected by neonatal screening will improve our knowledge of the natural history of the disease and inform better management.
Collapse
Affiliation(s)
- Alberto B Burlina
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Vincenza Gragnaniello
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| |
Collapse
|