1
|
Onishi S, Kojima M, Yamasaki F, Amatya VJ, Yonezawa U, Taguchi A, Ozono I, Go Y, Takeshima Y, Hiyama E, Horie N. T2-FLAIR mismatch sign, an imaging biomarker for CDKN2A-intact in non-enhancing astrocytoma, IDH-mutant. Neurosurg Rev 2024; 47:412. [PMID: 39117984 PMCID: PMC11310237 DOI: 10.1007/s10143-024-02632-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/09/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
INTRODUCTION The WHO classification of central nervous system tumors (5th edition) classified astrocytoma, IDH-mutant accompanied with CDKN2A/B homozygous deletion as WHO grade 4. Loss of immunohistochemical (IHC) staining for methylthioadenosine phosphorylase (MTAP) was developed as a surrogate marker for CDKN2A-HD. Identification of imaging biomarkers for CDKN2A status is of immense clinical relevance. In this study, we explored the association between radiological characteristics of non-enhancing astrocytoma, IDH-mutant to the CDKN2A/B status. METHODS Thirty-one cases of astrocytoma, IDH-mutant with MTAP results by IHC were included in this study. The status of CDKN2A was diagnosed by IHC staining for MTAP in all cases, which was further confirmed by comprehensive genomic analysis in 12 cases. The T2-FLAIR mismatch sign, cystic component, calcification, and intratumoral microbleeding were evaluated. The relationship between the radiological features and molecular pathological diagnosis was analyzed. RESULTS Twenty-six cases were identified as CDKN2A-intact while 5 cases were CDKN2A-HD. The presence of > 33% and > 50% T2-FLAIR mismatch was observed in 23 cases (74.2%) and 14 cases (45.2%), respectively, and was associated with CDKN2A-intact astrocytoma (p = 0.0001, 0.0482). None of the astrocytoma, IDH-mutant with CDKN2A-HD showed T2-FLAIR mismatch sign. Cystic component, calcification, and intratumoral microbleeding were not associated with CDKN2A status. CONCLUSION In patients with non-enhancing astrocytoma, IDH-mutant, the T2-FLAIR mismatch sign is a potential imaging biomarker for the CDKN2A-intact subtype. This imaging biomarker may enable preoperative prediction of CDKN2A status among astrocytoma, IDH-mutant.
Collapse
Affiliation(s)
- Shumpei Onishi
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, 734-8551, Hiroshima, Japan
| | - Masato Kojima
- Department of Pediatric Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Fumiyuki Yamasaki
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, 734-8551, Hiroshima, Japan.
| | - Vishwa Jeet Amatya
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ushio Yonezawa
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, 734-8551, Hiroshima, Japan
| | - Akira Taguchi
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, 734-8551, Hiroshima, Japan
| | - Iori Ozono
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, 734-8551, Hiroshima, Japan
| | - Yukari Go
- Medical Division Technical Center, Hiroshima University, Hiroshima, Japan
| | - Yukio Takeshima
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Eiso Hiyama
- Department of Pediatric Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, 734-8551, Hiroshima, Japan
| |
Collapse
|
2
|
Dagher SA, Lochner RH, Ozkara BB, Schomer DF, Wintermark M, Fuller GN, Ucisik FE. The T2-FLAIR mismatch sign in oncologic neuroradiology: History, current use, emerging data, and future directions. Neuroradiol J 2024; 37:441-453. [PMID: 37924213 PMCID: PMC11366202 DOI: 10.1177/19714009231212375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023] Open
Abstract
The T2-Fluid-Attenuated Inversion Recovery (T2-FLAIR) mismatch sign is a radiogenomic marker that is easily discernible on preoperative conventional MR imaging. Application of strict criteria (adult population, cerebral hemisphere location, and classic imaging morphology) permits the noninvasive preoperative diagnosis of isocitrate dehydrogenase (IDH)-mutant 1p/19q-non-codeleted diffuse astrocytoma with near-perfect specificity, albeit with variably low sensitivity. This leads to improved preoperative planning and patient counseling. More recent research has shown that the application of less strict criteria compromises the near-perfect specificity of the sign but remains adequate for ruling out IDH-wildtype (glioblastoma) phenotype, which bears a far grimmer prognosis compared to IDH-mutant diffuse astrocytic disease. In this review, we elaborate on the various definitions of the T2-FLAIR mismatch sign present in the literature, illustrate these with images obtained at a comprehensive cancer center, discuss the potential of the mismatch sign for application to certain pediatric-type brain tumors, namely dysembryoplastic neuroepithelial tumor and diffuse midline glioma, and elaborate upon the clinical, histologic, and molecular associations of the T2-FLAIR mismatch sign as recognized to date. Finally, the sign's correlates in diffusion- and perfusion-weighted imaging are presented, and opportunities to further maximize the diagnostic and prognostic applications of the sign in the context of the 2021 revision of the WHO Classification of Central Nervous System Tumors are discussed.
Collapse
Affiliation(s)
- Samir A Dagher
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Riley Hideo Lochner
- Section of Neuropathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Burak Berksu Ozkara
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Donald F Schomer
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Max Wintermark
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gregory N Fuller
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Section of Neuropathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - F Eymen Ucisik
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
3
|
Tang WT, Su CQ, Lin J, Xia ZW, Lu SS, Hong XN. T2-FLAIR mismatch sign and machine learning-based multiparametric MRI radiomics in predicting IDH mutant 1p/19q non-co-deleted diffuse lower-grade gliomas. Clin Radiol 2024; 79:e750-e758. [PMID: 38360515 DOI: 10.1016/j.crad.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/17/2024]
Abstract
AIM To investigate the application of the T2-weighted (T2)-fluid-attenuated inversion recovery (FLAIR) mismatch sign and machine learning-based multiparametric magnetic resonance imaging (MRI) radiomics in predicting 1p/19q non-co-deletion of lower-grade gliomas (LGGs). MATERIALS AND METHODS One hundred and forty-six patients, who had pathologically confirmed isocitrate dehydrogenase (IDH) mutant LGGs were assigned randomly to the training cohort (n=102) and the testing cohort (n=44) at a ratio of 7:3. The T2-FLAIR mismatch sign and conventional MRI features were evaluated. Radiomics features extracted from T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), FLAIR, apparent diffusion coefficient (ADC), and contrast-enhanced T1WI images (CE-T1WI). The models that displayed the best performance of each sequence were selected, and their predicted values as well as the T2-FLAIR mismatch sign data were collected to establish a final stacking model. Receiver operating characteristic curve (ROC) analyses and area under the curve (AUC) values were applied to evaluate and compare the performance of the models. RESULTS The T2-FLAIR mismatch sign was more common in the IDH mutant 1p/19q non-co-deleted group (p<0.05) and the area under the curve (AUC) value was 0.692 with sensitivity 0.397, specificity 0.987, and accuracy 0.712, respectively. The stacking model showed a favourable performance with an AUC of 0.925 and accuracy of 0.882 in the training cohort and an AUC of 0.886 and accuracy of 0.864 in the testing cohort. CONCLUSION The stacking model based on multiparametric MRI can serve as a supplementary tool for pathological diagnosis, offering valuable guidance for clinical practice.
Collapse
Affiliation(s)
- W-T Tang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - C-Q Su
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - J Lin
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Z-W Xia
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - S-S Lu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China.
| | - X-N Hong
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China.
| |
Collapse
|
4
|
Jen JP, Li X, Patel M, Haq H, Pohl U, Nagaraju S, Wykes V, Sanghera P, Watts C, Sawlani V. Beyond T2-FLAIR mismatch sign in isocitrate dehydrogenase mutant 1p19q non-codeleted astrocytoma: Analysis of tumor core and evolution with multiparametric magnetic resonance imaging. Neurooncol Adv 2024; 6:vdae065. [PMID: 39071736 PMCID: PMC11275453 DOI: 10.1093/noajnl/vdae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Background The T2-FLAIR mismatch sign is an imaging correlate for isocitrate dehydrogenase (IDH)-mutant 1p19q non-codeleted astrocytomas. However, it is only seen in a part of the cases at certain stages. Many of the tumors likely lose T2 homogeneity as they grow in size, and become heterogenous. The aim of this study was to investigate the timecourse of T2-FLAIR mismatch sign, and assess intratumoral heterogeneity using multiparametric magnetic resonance imaging techniques. Methods A total of 128 IDH-mutant gliomas were retrospectively analyzed. Observers blinded to molecular status used strict criteria to select T2-FLAIR mismatch astrocytomas. Pre-biopsy and follow-up standard structural sequences of T2, FLAIR and apparent diffusion coefficient, MR spectroscopy (both single- and multi-voxel techniques), and DSC perfusion were observed. Results Nine T2-FLAIR mismatch astrocytomas were identified. 7 had MR spectroscopy and perfusion data. The smallest astrocytomas began as rounded T2 homogeneous lesions without FLAIR suppression, and developed T2-FLAIR mismatch during follow-up with falls in NAA and raised Cho/Cr ratio. Larger tumors at baseline with T2-FLAIR mismatch signs developed intratumoral heterogeneity, and showed elevated Cho/Cr ratio and raised relative cerebral blood volume (rCBV). The highest levels of intratumoral Cho/Cr and rCBV changes were located within the tumor core, and this area signifies the progression of the tumors toward high grade. Conclusions T2-FLAIR mismatch sign is seen at a specific stage in the development of astrocytoma. By assessing the subsequent heterogeneity, MR spectroscopy and perfusion imaging are able to predict the progression of the tumor towards high grade, thereby can assist targeting for biopsy and selective debulking.
Collapse
Affiliation(s)
- Jian Ping Jen
- Department of Neuroradiology, University Hospitals Birmingham, Birmingham, UK
| | - Xuanxuan Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Markand Patel
- Department of Neuroradiology, University Hospitals Birmingham, Birmingham, UK
| | - Huzaifah Haq
- Department of Neuroradiology, University Hospitals Birmingham, Birmingham, UK
| | - Ute Pohl
- Department of Cellular Pathology, University Hospitals Birmingham, Birmingham, UK
| | - Santhosh Nagaraju
- Department of Cellular Pathology, University Hospitals Birmingham, Birmingham, UK
| | - Victoria Wykes
- Neuroimaging, University of Birmingham, Birmingham, UK
- Department of Neurosurgery, University Hospitals Birmingham, Birmingham, UK
| | - Paul Sanghera
- Neuroimaging, University of Birmingham, Birmingham, UK
| | - Colin Watts
- Neuroimaging, University of Birmingham, Birmingham, UK
- Department of Neurosurgery, University Hospitals Birmingham, Birmingham, UK
| | - Vijay Sawlani
- Department of Neuroradiology, University Hospitals Birmingham, Birmingham, UK
- Neuroimaging, University of Birmingham, Birmingham, UK
| |
Collapse
|
5
|
Naeem A, Aziz N, Nasir M, Rangwala HS, Fatima H, Mubarak F. Accuracy of MRI in Detecting 1p/19q Co-deletion Status of Gliomas: A Single-Center Retrospective Study. Cureus 2024; 16:e51863. [PMID: 38327950 PMCID: PMC10848880 DOI: 10.7759/cureus.51863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Background Oligodendrogliomas, rare brain tumors in the frontal lobe's white matter, are reshaped by molecular markers like isocitrate dehydrogenase mutations and 1p/19q co-deletion, influencing treatment outcomes. Despite the initial indolence, these tumors pose a significant risk, with a median survival of 10-12 years. Non-invasive alternatives, such as magnetic resonance imaging (MRI) for assessing T2-fluid-attenuated inversion recovery (FLAIR) mismatch and calcifications, provide insights into molecular subtypes and aid prognosis. Our study explored these features to predict the oligodendroglioma status and refine patient management to improve outcomes. Methods In this retrospective study, patient data identified patients with suspected central nervous system tumors undergoing MRI, revealing low-grade gliomas. Surgical biopsy and 1p/19q fluorescence in situ hybridization confirmed the co-deletion status. MRI was used to assess various morphological features. Statistical analyses included x2 tests, Fisher's exact tests, Kruskal-Wallis tests, and binary logistic regression models, with significance set at p < 0.05. Results Seventy-three patients (median age, 37 years) were stratified according to 1p/19q co-deletion. Most (61.6%) were 18-40 years old and mostly male (67.1%). Co-deletion cases, primarily frontal lobe lesions (67.6%), were unilateral (88.2%), with 55.9% non-circumscribed margins and 58.8% ill-defined contours. Smooth contrast enhancement and no necrosis were observed in 48.1% of 1p/19q co-deletion cases. Logistic regression analysis showed a significant association between ill-defined/irregular contours and 1p/19q co-deletion. Fisher's exact test confirmed this but raised concerns about the small sample size influencing the conclusions. Conclusions This study established a significant link between glioma tumor contour characteristics, particularly irregular and ill-defined contours, and the likelihood of 1p/19q co-deletion. Our findings underscore the clinical relevance of using tumor contours in treatment decisions and prognosis assessments.
Collapse
Affiliation(s)
- Adnan Naeem
- Department of Radiology, Aga Khan University Hospital, Karachi, PAK
| | - Namrah Aziz
- Department of Radiology, Aga Khan Health Service, Karachi, PAK
| | - Manal Nasir
- Department of Radiology, Aga Khan University Hospital, Karachi, PAK
| | | | - Hareer Fatima
- Department of Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | - Fatima Mubarak
- Department of Radiology, Aga Khan University Hospital, Karachi, PAK
| |
Collapse
|
6
|
Kwiatkowska-Miernik A, Mruk B, Sklinda K, Zaczyński A, Walecki J. Radiomics in the diagnosis of glioblastoma. Pol J Radiol 2023; 88:e461-e466. [PMID: 38020501 PMCID: PMC10660137 DOI: 10.5114/pjr.2023.132168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/04/2023] [Indexed: 12/01/2023] Open
Abstract
Radiomics is a process of extracting many quantitative data obtained from medical images and analysing them. In neuroradiology it may be used to discover magnetic resonance imaging (MRI) features of glioblastomas that are impossible to identify by human vision alone. In this article, the authors describe the methodology and their first experience in creating a predictive model based on radiomic features obtained from the preoperative MRI examination of patients with glioblastoma. Early identification of malignant glioblastoma subtypes characterized by different prognoses and responses to treatment would greatly facilitate the implementation of targeted therapy, which appears to be the future of glioblastoma treatment.
Collapse
Affiliation(s)
- Agnieszka Kwiatkowska-Miernik
- Department of Radiology, Centre of Postgraduate Medical Education, The National Institute of Medicine of the Ministry of the Interior and Administration, Warsaw, Poland
| | - Bartosz Mruk
- Department of Radiology, Centre of Postgraduate Medical Education, The National Institute of Medicine of the Ministry of the Interior and Administration, Warsaw, Poland
| | - Katarzyna Sklinda
- Department of Radiology, Centre of Postgraduate Medical Education, The National Institute of Medicine of the Ministry of the Interior and Administration, Warsaw, Poland
| | - Artur Zaczyński
- Department of Neurosurgery, The National Institute of Medicine of the Ministry of Interior and Administration, Warsaw, Poland
| | - Jerzy Walecki
- Department of Radiology, Centre of Postgraduate Medical Education, The National Institute of Medicine of the Ministry of the Interior and Administration, Warsaw, Poland
| |
Collapse
|
7
|
Picca A, Bruno F, Nichelli L, Sanson M, Rudà R. Advances in molecular and imaging biomarkers in lower-grade gliomas. Expert Rev Neurother 2023; 23:1217-1231. [PMID: 37982735 DOI: 10.1080/14737175.2023.2285472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION Lower-grade (grade 2-3) gliomas (LGGs) constitutes a group of primary brain tumors with variable clinical behaviors and treatment responses. Recent advancements in molecular biology have redefined their classification, and novel imaging modalities emerged for the noninvasive diagnosis and follow-up. AREAS COVERED This review comprehensively analyses the current knowledge on molecular and imaging biomarkers in LGGs. Key molecular alterations, such as IDH mutations and 1p/19q codeletion, are discussed for their prognostic and predictive implications in guiding treatment decisions. Moreover, the authors explore theranostic biomarkers for the potential of tailored therapies. Additionally, they also describe the utility of advanced imaging modalities, including widely available techniques, as dynamic susceptibility contrast perfusion-weighted imaging and less validated, emerging approaches, for the noninvasive LGGs characterization and follow-up. EXPERT OPINION The integration of molecular markers enhanced the stratification of LGGs, leading to the new concept of integrated histomolecular classification. While the IDH mutation is an established key prognostic and predictive marker, recent results from IDH inhibitors trials showed its potential value as a theranostic marker. In this setting, advanced MRI techniques such as 2-D-hydroxyglutarate spectroscopy are very promising for the noninvasive diagnosis and monitoring of LGGs. This progress offers exciting prospects for personalized medicine and improved treatment outcomes in LGGs.
Collapse
Affiliation(s)
- Alberto Picca
- Service de Neurologie 2 Mazarin, Hôpital Universitaire Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Inserm, CNRS, UMRS1127, Institut du Cerveau-Paris Brain Institute-ICM, AP-HP, Paris, France
| | - Francesco Bruno
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science University Hospital, Turin, Italy
| | - Lucia Nichelli
- Service de Neuroradiologie, Hôpital Universitaire Pitié-Salpêtrière, AP-HP, Paris, France
| | - Marc Sanson
- Service de Neurologie 2 Mazarin, Hôpital Universitaire Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Inserm, CNRS, UMRS1127, Institut du Cerveau-Paris Brain Institute-ICM, AP-HP, Paris, France
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science University Hospital, Turin, Italy
| |
Collapse
|
8
|
Slaghour RM, Almarshedi RA, Alzahrani AM, Albadr F. T2-Fluid-Attenuated Inversion Recovery (FLAIR) Mismatch as a Novel Specific MRI Marker for Adult Low-Grade Glioma (LGG): A Case Report. Cureus 2022; 14:e29457. [PMID: 36299937 PMCID: PMC9587756 DOI: 10.7759/cureus.29457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Astrocytic tumors are primary central nervous system tumors. They are the most common tumors arising from glial cells. In the new WHO classification 2021, adult-type diffuse astrocytic gliomas subdivide into isocitrate dehydrogenase (IDH)-mutant astrocytoma, IDH-mutant and 1p/19q-codeleted oligodendroglioma, and IDH-wildtype glioblastoma. The T2-fluid-attenuated inversion recovery (FLAIR) mismatch sign describes the MRI appearance of IDH-mutant astrocytoma, it is considered a highly specific radiogenomic signature for diffuse astrocytoma, as opposed to other lower-grade. MRI is the first and most accurate diagnostic tool for low-grade gliomas (LGGs). It is particularly helpful in distinguishing a diffuse astrocytoma from an oligodendroglioma that will not demonstrate T2-FLAIR mismatch. The tumor displays a hyperintense signal on T2-weighted images and a hypointense signal on T2-weighted FLAIR images, which distinguishes it from other types of diffuse gliomas. We report a case of a 29-year-old female patient who was diagnosed with IDH-mutant 1p/19q-non-codeleted diffuse astrocytoma based on MRI T-2 FLAIR mismatch sign, which is confirmed by the molecular analysis in the pathology lab. Our aim of this report is to confirm the power of the MRI findings in the diagnosis of glioma genotypes and to assess neurosurgeons in the preoperative surgical planning.
Collapse
|