1
|
Yu J, Zhu J, Zhong H, Zhang Z, Liu J, Lin X, Zeng G, Zhang M, Wu C, Deng Y, Sun Y, Wu L. Age-Related Hearing Impairment: Genome and Blood Methylome Data Integration Reveals Candidate Epigenetic Biomarkers. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024. [PMID: 39585213 DOI: 10.1089/omi.2024.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Age-related hearing impairment (ARHI) is a major planetary health burden that is in need of precision medicine for prevention, diagnosis, and treatment. The present study was set out to identify candidate epigenetic markers for ARHI. Associations of genetically predicted DNA methylation levels with ARHI risk were evaluated using two sets of blood DNA methylation genetic prediction models in 147,997 cases and 575,269 controls of European descent. A total of 1314 CpG sites (CpGs) were significantly associated with ARHI risk at a false discovery rate (FDR) <0.05, including 12 putatively causal CpGs based on fine-mapping analysis. Measured methylation levels of 247 of the associated CpGs were significantly correlated with measured expression levels of 127 nearby genes in blood at an FDR <0.05. A total of 37 CpGs and their 18 nearby genes showed consistent association directions for the methylation-gene expression-ARHI risk pathway. Importantly, three genes (PEX6, TCF19, and SPTBN1) were enriched in auditory disease categories. Our results indicate that specific CpGs may modulate ARHI risk by regulating the expression of candidate ARHI target genes. Future precision medicine and biomarker development research on ARHI are called for.
Collapse
Affiliation(s)
- Jie Yu
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, P. R. China
| | - Jingjing Zhu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Hua Zhong
- Population Sciences in the Pacific Program, Cancer Epidemiology Division, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Zicheng Zhang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jiawen Liu
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, P. R. China
| | - Xin Lin
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, P. R. China
| | - Guanghua Zeng
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, P. R. China
| | - Min Zhang
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, P. R. China
| | - Chong Wu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Yanfa Sun
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, P. R. China
- Population Sciences in the Pacific Program, Cancer Epidemiology Division, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Lang Wu
- Population Sciences in the Pacific Program, Cancer Epidemiology Division, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| |
Collapse
|
2
|
Chen M, Shen MC, Chang SP, Ma GC, Lee DJ, Yan A. De Novo Noninversion Variants Implicated in Sporadic Hemophilia A: A Variant Origin and Timing Study. Int J Mol Sci 2024; 25:1763. [PMID: 38339041 PMCID: PMC10855912 DOI: 10.3390/ijms25031763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Sporadic hemophilia A (HA) enables the persistence of HA in the population. F8 gene inversion originates mainly in male germ cells during meiosis. To date, no studies have shown the origin and timing of HA sporadic noninversion variants (NIVs); herein, we assume that HA-sporadic NIVs are generated as a de novo variant. Of the 125 registered families with HA, 22 were eligible for inclusion. We conducted a linkage analysis using F8 gene markers and amplification refractory mutation system-quantitative polymerase chain reaction to confirm the origin of the sporadic NIVs (~0% mutant cells) or the presence of a mosaic variant, which requires further confirmation of the origin in the parent. Nine mothers, four maternal grandmothers, and six maternal grandfathers were confirmed to be the origin of sporadic NIVs, which most likely occurred in the zygote within the first few cell divisions and in single sperm cells, respectively. Three mothers had mosaic variants, which most likely occurred early in postzygotic embryogenesis. All maternal grandparents were free from sporadic NIV. In conclusion, F8 NIVs in sporadic HA were found to be caused primarily by de novo variants. Our studies are essential for understanding the genetic pathogenesis of HA and improving current genetic counseling.
Collapse
Affiliation(s)
- Ming Chen
- Department of Genomic Medicine, Changhua Christian Hospital, Changhua 500, Taiwan; (M.C.); (S.-P.C.); (G.-C.M.); (D.-J.L.); (A.Y.)
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua 500, Taiwan
- Department of Medical Genetics National Taiwan University Hospital, Taipei 100, Taiwan
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Ming-Ching Shen
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
- Hemophilia Treatment and Thrombosis Center, Department of Internal Medicine, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Shun-Ping Chang
- Department of Genomic Medicine, Changhua Christian Hospital, Changhua 500, Taiwan; (M.C.); (S.-P.C.); (G.-C.M.); (D.-J.L.); (A.Y.)
| | - Gwo-Chin Ma
- Department of Genomic Medicine, Changhua Christian Hospital, Changhua 500, Taiwan; (M.C.); (S.-P.C.); (G.-C.M.); (D.-J.L.); (A.Y.)
| | - Dong-Jay Lee
- Department of Genomic Medicine, Changhua Christian Hospital, Changhua 500, Taiwan; (M.C.); (S.-P.C.); (G.-C.M.); (D.-J.L.); (A.Y.)
| | - Adeline Yan
- Department of Genomic Medicine, Changhua Christian Hospital, Changhua 500, Taiwan; (M.C.); (S.-P.C.); (G.-C.M.); (D.-J.L.); (A.Y.)
| |
Collapse
|
3
|
Wang L, Liu G, Ma D, Zeng H, Wang Y, Luo C, Zhang J, Xu Z. Next-generation sequencing for genetic testing of hearing loss populations. Clin Chim Acta 2024; 552:117693. [PMID: 38056549 DOI: 10.1016/j.cca.2023.117693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/03/2023] [Accepted: 12/03/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND AND AIMS Hearing loss is a common sensorineural disease with genetic heterogeneity. More than 140 genes are known to cause hereditary hearing loss. We aim to uncover the etiologies of hearing loss and provide patients with reasonable reproductive choices. MATERIALS AND METHODS Total 825 participants were recruited, including 74 individuals, 47 couples, and 219 families, to identify the molecular etiologies of hearing loss using next-generation sequencing (NGS). Novel mutations were verified with a minigene splicing assay and the construction of three-dimensional protein models. RESULTS A positive molecular diagnosis was obtained for 244 patients, a rate of 63.05 %. Total 470 mutations were identified in 18 causative genes in positive patients. The most common genes mutated were GJB2 and SLC26A4. 47 novel mutations were identified. Further analysis predicted that two splicing mutations would cause abnormal mRNA splicing and three missense mutations would affect the protein structure. The results of prenatal diagnosis showed that the genotypes of 15 fetuses were the same as the probands. CONCLUSION Our findings expand the mutation spectrum of hearing loss and highlight the importance of genetic diagnosis and prenatal diagnosis to allow accurate and personalized guidance for those at high risk of deafness.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, China
| | - Gang Liu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, China
| | - Dingyuan Ma
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, China
| | - Huasha Zeng
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, China
| | - Yuguo Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, China
| | - Chunyu Luo
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, China
| | - Jingjing Zhang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, China.
| | - Zhengfeng Xu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, China.
| |
Collapse
|
4
|
Chen M, Shen MC, Chang SP, Ma GC, Huang YC, Lin CY. Origin and timing of de novo variants implicated in type 2 von Willebrand disease. J Cell Mol Med 2022; 26:5403-5413. [PMID: 36226571 PMCID: PMC9639050 DOI: 10.1111/jcmm.17563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/30/2022] [Accepted: 09/11/2022] [Indexed: 12/03/2022] Open
Abstract
Very few studies have shown the real origin and timing of de novo variants (DNV) implicated in von Willebrand disease (VWD). We investigated four families with type 2 VWD. First, we conducted linkage analysis using single nucleotide variant genotyping to recognize the possible provenance of DNV. Second, we performed amplification refractory mutation system‐quantitative polymerase chain reaction to confirm the real origin of variant (~0% mutant cells) or presence of a genetic mosaic variant (0%–50% mutant cells) in three embryonic germ layer‐derived tissues and sperm cells. Then, three possible timings of DNV were categorized based on the relative likelihood of occurrence according to the number of cell divisions during embryogenesis. Two each with type 2B VWD (proband 1 p.Arg1308Cys, proband 4 p.Arg1306Trp) and type 2A VWD (proband 2 p.Leu1276Arg, proband 3 p.Ser1506Leu) were identified. Variant origins were identified for families 1, 2 and 3 and confirmed to originate from the mother, father and father, respectively. However, the father of family 4 was confirmed to have isolated germline mosaicism with 2.2% mutant sperm cells. Further investigation confirmed the paternal grandfather to be the origin of variant. Thus, we proposed that DNV originating from the two fathers most likely occurred at the single sperm cell, the one originating from the mother occurred at the zygote during the first few cellular divisions; alternatively, in family 4, the DNV most likely occurred at the early postzygotic development in the father. Our findings are essential for understanding genetic pathogenesis and providing accurate genetic counselling.
Collapse
Affiliation(s)
- Ming Chen
- Department of Genomic Medicine, Changhua Christian Hospital, Changhua, Taiwan.,Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Ching Shen
- Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan.,Department of Laboratory Medicine and Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shun-Ping Chang
- Department of Genomic Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Gwo-Chin Ma
- Department of Genomic Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Ying-Chih Huang
- Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Ching-Yeh Lin
- Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| |
Collapse
|