1
|
Cho SY, Kang NS. The Solute Carrier (SLC) Transporter Superfamily as Therapeutic Targets for the Treatment of Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2024; 16:3226. [PMID: 39335197 PMCID: PMC11430461 DOI: 10.3390/cancers16183226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Head and neck squamous cell carcinoma (HNSC) is the most prevalent cancer in the head and neck region, originating from the mucosal epithelium of the oral cavity, pharynx, and larynx. The solute carrier (SLC) transporter superfamily, consisting of over 400 proteins across 65 families, plays a crucial role in cellular functions and presents promising targets in precision oncology. This study aims to analyze the expression of SLC transporters in HNSC and their potential as biomarkers and therapeutic targets. Methods: We leveraged mRNA and protein expression data from The Cancer Genome Atlas (TCGA) and The Human Protein Atlas (HPA) to examine SLC transporter expression in HNSC. Gene Set Enrichment Analysis (GSEA) was conducted to assess the involvement of SLC transporters in various oncogenic pathways. Results: Significant upregulation of SLC transporters was observed in tumor tissues compared to normal tissues, with notable increases in SLC16A3, SLC53A1, SLC25A32, and SLC2A3. This upregulation correlated with poorer overall survival (OS) and disease-specific survival (DSS). GSEA revealed that these transporters are significantly involved in critical oncogenic pathways, including epithelial-mesenchymal transition (EMT), angiogenesis, and hypoxia, which are vital for cancer progression and metastasis. Conclusions: The study identifies SLC transporters as potential biomarkers and therapeutic targets in HNSC. Targeting these transporters with small molecule inhibitors could disrupt essential supply routes for cancer cells, enhancing treatment efficacy and improving patient outcomes. This study paves the way for developing SLC-based target therapies in precision oncology, with the goal of improving survival rates for patients with HNSC.
Collapse
Affiliation(s)
- Sang Yeon Cho
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea;
- CHOMEDICINE Inc., TIPS Town, Chungnam National University, Daejeon 34135, Republic of Korea
| | - Nam Sook Kang
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea;
| |
Collapse
|
2
|
Chand Dakal T, Choudhary K, Tiwari I, Yadav V, Kumar Maurya P, Kumar Sharma N. Unraveling the Triad: Hypoxia, Oxidative Stress and Inflammation in Neurodegenerative Disorders. Neuroscience 2024; 552:126-141. [PMID: 38936458 DOI: 10.1016/j.neuroscience.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/07/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
The mammalian brain's complete dependence on oxygen for ATP production makes it highly susceptible to hypoxia, at high altitudes or in clinical scenarios including anemia or pulmonary disease. Hypoxia plays a crucial role in the development of various brain disorders, such as Alzheimer's, Parkinson's, and other age-related neurodegenerative diseases. On the other hand, a decrease in environmental oxygen levels, such as prolonged stays at high elevations, may have beneficial impacts on the process of ageing and the likelihood of death. Additionally, the utilization of controlled hypoxia exposure could potentially serve as a therapeutic approach for age-related brain diseases. Recent findings indicate that the involvement of HIF-1α and the NLRP3 inflammasome is of significant importance in the development of Alzheimer's disease. HIF-1α serves as a pivotal controller of various cellular reactions to oxygen deprivation, exerting influence on a multitude of physiological mechanisms such as energy metabolism and inflammatory responses. The NLRP3 plays a crucial role in the innate immune system by coordinating the initiation of inflammatory reactions through the assembly of the inflammasome complex. This review examines the information pertaining to the contrasting effects of hypoxia on the brain, highlighting both its positive and deleterious effects and molecular pathways that are involved in mediating these different effects. This study explores potential strategies for therapeutic intervention that focus on restoring cellular balance and reducing neuroinflammation, which are critical aspects in addressing this severe neurodegenerative condition and addresses crucial inquiries that warrant further future investigations.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Kanika Choudhary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Isha Tiwari
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Rajasthan, India
| | - Vikas Yadav
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Narendra Kumar Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Rajasthan, India.
| |
Collapse
|
3
|
Kato H, Chen H, Shang KM, Izumi K, Koba N, Tsuchiya T, Kawazoe N, Quijano J, Omori K, Orr C, Qi M, Ku HT, Kandeel F, Tai YC, Chen G, Komatsu H. Physiomimetic Fluidic Culture Platform on Microwell-Patterned Porous Collagen Scaffold for Human Pancreatic Islets. Cell Transplant 2024; 33:9636897241249556. [PMID: 38742734 PMCID: PMC11095165 DOI: 10.1177/09636897241249556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Pancreatic islet transplantation is one of the clinical options for certain types of diabetes. However, difficulty in maintaining islets prior to transplantation limits the clinical expansion of islet transplantations. Our study introduces a dynamic culture platform developed specifically for primary human islets by mimicking the physiological microenvironment, including tissue fluidics and extracellular matrix support. We engineered the dynamic culture system by incorporating our distinctive microwell-patterned porous collagen scaffolds for loading isolated human islets, enabling vertical medium flow through the scaffolds. The dynamic culture system featured four 12 mm diameter islet culture chambers, each capable of accommodating 500 islet equivalents (IEQ) per chamber. This configuration calculates > five-fold higher seeding density than the conventional islet culture in flasks prior to the clinical transplantations (442 vs 86 IEQ/cm2). We tested our culture platform with three separate batches of human islets isolated from deceased donors for an extended period of 2 weeks, exceeding the limits of conventional culture methods for preserving islet quality. Static cultures served as controls. The computational simulation revealed that the dynamic culture reduced the islet volume exposed to the lethal hypoxia (< 10 mmHg) to ~1/3 of the static culture. Dynamic culture ameliorated the morphological islet degradation in long-term culture and maintained islet viability, with reduced expressions of hypoxia markers. Furthermore, dynamic culture maintained the islet metabolism and insulin-secreting function over static culture in a long-term culture. Collectively, the physiological microenvironment-mimetic culture platform supported the viability and quality of isolated human islets at high-seeding density. Such a platform has a high potential for broad applications in cell therapies and tissue engineering, including extended islet culture prior to clinical islet transplantations and extended culture of stem cell-derived islets for maturation.
Collapse
Affiliation(s)
- Hiroyuki Kato
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Huajian Chen
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Kuang-Ming Shang
- Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | | | | | - Naoki Kawazoe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Janine Quijano
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Keiko Omori
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Chris Orr
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Meirigeng Qi
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Hsun Teresa Ku
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Yu-Chong Tai
- Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Guoping Chen
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Hirotake Komatsu
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, USA
| |
Collapse
|
4
|
Chai F, Zhang J, Fu T, Jiang P, Huang Y, Wang L, Yan S, Yan X, Yu L, Xu Z, Wang R, Xu B, Du X, Jiang Y, Zhang J. Identification of SLC2A3 as a prognostic indicator correlated with the NF-κB/EMT axis and immune response in head and neck squamous cell carcinoma. Channels (Austin) 2023; 17:2208928. [PMID: 37134043 PMCID: PMC10158547 DOI: 10.1080/19336950.2023.2208928] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
SLC2A3 is an important member of the glucose transporter superfamily. It has been recently suggested that upregulation of SLC2A3 is associated with poor survival and acts as a prognostic marker in a variety of tumors. Unfortunately, the prognostic role of SLC2A3 in head and neck squamous cell carcinoma (HNSC) is less known. In the present study, we analyzed SLC2A3 expression in HNSC and its correlation with prognosis using TCGA and GEO databases. The results showed that SLC2A3 mRNA expression was higher in HNSC compared with adjacent normal tissues, which was validated with our 9 pairs of HNSC specimens. Moreover, high SLC2A3 expression predicted poor prognosis in HNSC patients. Mechanistically, GSEA revealed that high expression of SLC2A3 was enriched in epithelial-mesenchymal transition (EMT) and NF-κB signaling. In HNSC cell lines, SLC2A3 knockdown inhibited cell proliferation and migration. In addition, NF-κB P65 and EMT-related gene expression was suppressed upon SLC2A3 knockdown, indicating that SLC2A3 may play a preeminent role in the progression of HNSC through the NF-κB/EMT axis. Meanwhile, the expression of SLC2A3 was negatively correlated with immune cells, suggesting that SLC2A3 may be involved in the immune response in HNSC. The correlation between SLC2A3 expression and drug sensitivity was further assessed. In conclusion, our study demonstrated that SLC2A3 could predict the prognosis of HNSC patients and mediate the progression of HNSC via the NF-κB/EMT axis and immune responses.
Collapse
Affiliation(s)
- Fangyu Chai
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jingfang Zhang
- Department of Pathology, Shandong First Medical University, Jinan, Shandong, China
| | - Tao Fu
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Peng Jiang
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yichuan Huang
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Lin Wang
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Shu Yan
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xudong Yan
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Longgang Yu
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Zhen Xu
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Ruohuang Wang
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Bingqing Xu
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xiaoyun Du
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yan Jiang
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Key Laboratory of Otolaryngology-Head and Neck Surgery, Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jisheng Zhang
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Key Laboratory of Otolaryngology-Head and Neck Surgery, Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Rago V, Perri A, Di Agostino S. New Therapeutic Perspectives in Prostate Cancer: Patient-Derived Organoids and Patient-Derived Xenograft Models in Precision Medicine. Biomedicines 2023; 11:2743. [PMID: 37893116 PMCID: PMC10604340 DOI: 10.3390/biomedicines11102743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
One of the major goals in the advancement of basic cancer research focuses on the development of new anticancer therapies. To understand the molecular mechanisms of cancer progression, acquired drug resistance, and the metastatic process, the use of preclinical in vitro models that faithfully summarize the properties of the tumor in patients is still a necessity. The tumor is represented by a diverse group of cell clones, and in recent years, to reproduce in vitro preclinical tumor models, monolayer cell cultures have been supplanted by patient-derived xenograft (PDX) models and cultured organoids derived from the patient (PDO). These models have proved indispensable for the study of the tumor microenvironment (TME) and its interaction with tumor cells. Prostate cancer (PCa) is the most common neoplasia in men in the world. It is characterized by genomic instability and resistance to conventional therapies. Despite recent advances in diagnosis and treatment, PCa remains a leading cause of cancer death. Here, we review the studies of the last 10 years as the number of papers is growing very fast in the field. We also discuss the discovered limitations and the new challenges in using the organoid culture system and in using PDXs in studying the prostate cancer phenotype, performing drug testing, and developing anticancer molecular therapies.
Collapse
Affiliation(s)
- Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Anna Perri
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Silvia Di Agostino
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
6
|
Choi SYC, Ribeiro CF, Wang Y, Loda M, Plymate SR, Uo T. Druggable Metabolic Vulnerabilities Are Exposed and Masked during Progression to Castration Resistant Prostate Cancer. Biomolecules 2022; 12:1590. [PMID: 36358940 PMCID: PMC9687810 DOI: 10.3390/biom12111590] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2023] Open
Abstract
There is an urgent need for exploring new actionable targets other than androgen receptor to improve outcome from lethal castration-resistant prostate cancer. Tumor metabolism has reemerged as a hallmark of cancer that drives and supports oncogenesis. In this regard, it is important to understand the relationship between distinctive metabolic features, androgen receptor signaling, genetic drivers in prostate cancer, and the tumor microenvironment (symbiotic and competitive metabolic interactions) to identify metabolic vulnerabilities. We explore the links between metabolism and gene regulation, and thus the unique metabolic signatures that define the malignant phenotypes at given stages of prostate tumor progression. We also provide an overview of current metabolism-based pharmacological strategies to be developed or repurposed for metabolism-based therapeutics for castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Stephen Y. C. Choi
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Caroline Fidalgo Ribeiro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10021, USA
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10021, USA
- New York Genome Center, New York, NY 10013, USA
| | - Stephen R. Plymate
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
- Geriatrics Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Takuma Uo
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
| |
Collapse
|
7
|
Comprehensive Analysis of the Role of SLC2A3 on Prognosis and Immune Infiltration in Head and Neck Squamous Cell Carcinoma. Anal Cell Pathol (Amst) 2022; 2022:2371057. [PMID: 36247875 PMCID: PMC9553684 DOI: 10.1155/2022/2371057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/01/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Background. SLC2A3 is upregulated in various cancer types and promotes proliferation, invasion, and metabolism. However, its role in the prognosis and immune regulation of head and neck squamous cell carcinoma (HNSCC) is still obscure. This study is aimed at exploring the prognostic and immunotherapeutic potential of SLC2A3 in HNSCC. Methods. All data were downloaded from TCGA database and integrated via R software. SLC2A3 expression was evaluated using R software, TIMER, CPTAC, and HPA databases. The association between SLC2A3 expression and clinicopathologic characteristics was assessed by R software. The effect of SLC2A3 on survival was analyzed by R software and Kaplan-Meier Plotter. Genomic alterations in SLC2A3 were investigated using the cBioPortal database. Coexpression of SLC2A3 was studied using LinkedOmics and STRING, and enrichment analyses were performed with R software. The relationship between SLC2A3 expression and immune infiltration was determined using TIMER and TISIDB databases. Immune checkpoints and ESTIMATE score were analyzed via the SangerBox database. Results. SLC2A3 expression was upregulated in HNSCC tissues compared to normal tissues. It was significantly related to TNM stage, histological grade, and alcohol history. High SLC2A3 expression was associated with poor prognosis in HNSCC. Coexpression analysis indicated that SLC2A3 mostly participated in the HIF-1 signaling pathway and glycolysis. Furthermore, SLC2A3 expression strongly correlated with tumor-infiltrating lymphocytes in HNSCC. Conclusion. SLC2A3 could serve as a potential prognostic biomarker for tumor immune infiltration in HNSCC.
Collapse
|
8
|
Asiedu E, Larbi A, Adankwah E, Yambah JK, Sakyi SA, Kwarteng EVS, Obiri-Yeboah D, Kwarteng A. Transcriptomic profiling identifies host-derived biomarker panels for assessing cerebral malaria. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Zhang L, Yan C, Hou X, Zhang X, Xie J, Xu H, Tong Y, Cui X, Cai K, Pu X, Wang L, Bai T, Wang D. The predictive accuracy of preoperative erythrocyte count and maximum tumor diameter to maximum kidney diameter ratio in renal cell carcinoma. Transl Androl Urol 2022; 11:974-981. [PMID: 35958894 PMCID: PMC9360514 DOI: 10.21037/tau-22-414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background The purpose of this study was to investigate the predictive accuracy of erythrocyte count and maximum tumor diameter to maximum kidney diameter ratio (TKR) in patients with renal cell carcinoma (RCC). Methods We retrospectively analyzed the clinicopathological epidemiological characteristics of patients with RCC in the First Hospital of Shanxi Medical University from 2010 to 2014. Among them, 295 cases with complete follow-up data at the time of visit were selected. We collected data including erythrocyte counts and length of each diameter line of the tumor and kidney. To predict the prognosis of RCC, receiver operating characteristic (ROC) curve analysis was used to calculate the cutoff value of each parameter. Results Of the 295 included patients, 199 (67.5%) were male, 96 (32.5%) were female, and the mean (± SD) age was 56.45±11.03 years. The area under the curve (AUC) of the erythrocyte count and the TKR for predicting the prognosis of RCC were 0.672 (SD 0.031; P<0.001) and 0.800 (SD 0.030; P<0.001), respectively. When the cutoff value of the erythrocyte count and TKR count were 3.975 and 0.452, the highest Youden index values were 0.309 and 0.685, and the corresponding sensitivity and specificity were 0.826 and 0.685, and 0.483 and 1.000, respectively. Conclusions An erythrocyte count <3.975×1012/L and a TKR >0.452 were found to be risk factors for poor prognosis in patients with RCC.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, China.,First College of Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Congmin Yan
- Department of Pathology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xun Hou
- First College of Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Xuhui Zhang
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jialin Xie
- Department of Pathology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hexiang Xu
- Department of Pathology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yujun Tong
- Department of Pathology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinyue Cui
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Ke Cai
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xin Pu
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Liyan Wang
- Fenyang College of Shanxi Medical University, Lvliang, China
| | - Tao Bai
- Department of Pathology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Dongwen Wang
- First College of Clinical Medicine, Shanxi Medical University, Taiyuan, China.,National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|