1
|
Chen L, Ma L, Zhang F, Zhan W, Yang X, Sun L. A method of three-dimensional non-rigid localization of liver tumors based on structured light. OPTICS AND LASERS IN ENGINEERING 2024; 174:107962. [DOI: 10.1016/j.optlaseng.2023.107962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
2
|
Saleem S, Amin J, Sharif M, Mallah GA, Kadry S, Gandomi AH. Leukemia segmentation and classification: A comprehensive survey. Comput Biol Med 2022; 150:106028. [PMID: 36126356 DOI: 10.1016/j.compbiomed.2022.106028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/11/2022] [Accepted: 08/20/2022] [Indexed: 11/30/2022]
Abstract
Blood is made up of leukocytes (WBCs), erythrocytes (RBCs), and thrombocytes. The ratio of blood cancer diseases is increasing rapidly, among which leukemia is one of the famous cancer which may lead to death. Leukemia cancer is initiated by the unnecessary growth of immature WBCs present in the sponge tissues of bone marrow. It is generally analyzed by etiologists by perceiving slides of blood smear images under a microscope. The morphological features and blood cells count facilitated the etiologists to detect leukemia. Due to the late detection and expensive instruments used for leukemia analysis, the death rate has risen significantly. The fluorescence-based cell sorting technique and manual recounts using a hemocytometer are error-prone and imprecise. Leukemia detection methods consist of pre-processing, segmentation, features extraction, and classification. In this article, recent deep learning methodologies and challenges for leukemia detection are discussed. These methods are helpful to examine the microscopic blood smears images and for the detection of leukemia more accurately.
Collapse
Affiliation(s)
- Saba Saleem
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Pakistan
| | - Javaria Amin
- Department of Computer Science, University of Wah, Wah Cantt, Pakistan
| | - Muhammad Sharif
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Pakistan
| | | | - Seifedine Kadry
- Department of Applied Data Science, Noroff University College, Kristiansand, Norway; Department of Electrical and Computer Engineering, Lebanese American University, Byblos, Lebanon
| | - Amir H Gandomi
- Faculty of Engineering & Information Technology, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
3
|
Amin J, Sharif M, Mallah GA, Fernandes SL. An optimized features selection approach based on Manta Ray Foraging Optimization (MRFO) method for parasite malaria classification. Front Public Health 2022; 10:969268. [PMID: 36148344 PMCID: PMC9486170 DOI: 10.3389/fpubh.2022.969268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/03/2022] [Indexed: 01/25/2023] Open
Abstract
Malaria is a serious and lethal disease that has been reported by the World Health Organization (WHO), with an estimated 219 million new cases and 435,000 deaths globally. The most frequent malaria detection method relies mainly on the specialists who examine the samples under a microscope. Therefore, a computerized malaria diagnosis system is required. In this article, malaria cell segmentation and classification methods are proposed. The malaria cells are segmented using a color-based k-mean clustering approach on the selected number of clusters. After segmentation, deep features are extracted using pre-trained models such as efficient-net-b0 and shuffle-net, and the best features are selected using the Manta-Ray Foraging Optimization (MRFO) method. Two experiments are performed for classification using 10-fold cross-validation, the first experiment is based on the best features selected from the pre-trained models individually, while the second experiment is performed based on the selection of best features from the fusion of extracted features using both pre-trained models. The proposed method provided an accuracy of 99.2% for classification using the linear kernel of the SVM classifier. An empirical study demonstrates that the fused features vector results are better as compared to the individual best-selected features vector and the existing latest methods published so far.
Collapse
Affiliation(s)
- Javeria Amin
- Department of Computer Science, University of Wah, Wah Cantt, Pakistan,*Correspondence: Javeria Amin
| | - Muhammad Sharif
- Department of Computer Science, COMSATS University Islamabad, Islamabad, Pakistan
| | - Ghulam Ali Mallah
- Department of Computer Science, Shah Abdul Latif University, Khairpur, Pakistan
| | - Steven L. Fernandes
- Department of Computer Science, Design and Journalism, Creighton University, Omaha, NE, United States
| |
Collapse
|
4
|
Yunus U, Amin J, Sharif M, Yasmin M, Kadry S, Krishnamoorthy S. Recognition of Knee Osteoarthritis (KOA) Using YOLOv2 and Classification Based on Convolutional Neural Network. Life (Basel) 2022; 12:1126. [PMID: 36013305 PMCID: PMC9410095 DOI: 10.3390/life12081126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 12/23/2022] Open
Abstract
Knee osteoarthritis (KOA) is one of the deadliest forms of arthritis. If not treated at an early stage, it may lead to knee replacement. That is why early diagnosis of KOA is necessary for better treatment. Manually KOA detection is a time-consuming and error-prone task. Computerized methods play a vital role in accurate and speedy detection. Therefore, the classification and localization of the KOA method are proposed in this work using radiographic images. The two-dimensional radiograph images are converted into three-dimensional and LBP features are extracted having the dimension of N × 59 out of which the best features of N × 55 are selected using PCA. The deep features are also extracted using Alex-Net and Dark-net-53 with the dimensions of N × 1024 and N × 4096, respectively, where N represents the number of images. Then, N × 1000 features are selected individually from both models using PCA. Finally, the extracted features are fused serially with the dimension of N × 2055 and passed to the classifiers on a 10-fold cross-validation that provides an accuracy of 90.6% for the classification of KOA grades. The localization model is proposed with the combination of an open exchange neural network (ONNX) and YOLOv2 that is trained on the selected hyper-parameters. The proposed model provides 0.98 mAP for the localization of classified images. The experimental analysis proves that the presented framework provides better results as compared to existing works.
Collapse
Affiliation(s)
- Usman Yunus
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantt 47010, Pakistan; (U.Y.); (M.S.); (M.Y.)
| | - Javeria Amin
- Department of Computer Science, University of Wah, Wah Cantt 47010, Pakistan;
| | - Muhammad Sharif
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantt 47010, Pakistan; (U.Y.); (M.S.); (M.Y.)
| | - Mussarat Yasmin
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantt 47010, Pakistan; (U.Y.); (M.S.); (M.Y.)
| | - Seifedine Kadry
- Department of Applied Data Science, Noroff University College, 4612 Kristiansand, Norway;
| | - Sujatha Krishnamoorthy
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou 325060, China
- Wenzhou Municipal Key Lab of Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou 325060, China
| |
Collapse
|
5
|
Al Duhayyim M, Mengash HA, Marzouk R, Nour MK, Mahgoub H, Althukair F, Mohamed A. Hybrid Rider Optimization with Deep Learning Driven Biomedical Liver Cancer Detection and Classification. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:6162445. [PMID: 35814569 PMCID: PMC9262480 DOI: 10.1155/2022/6162445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/02/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022]
Abstract
Biomedical engineering is the application of the principles and problem-solving methods of engineering to biology along with medicine. Computation intelligence is the study of design of intelligent agents which are systems acting perceptively. The computation intelligence paradigm offers more advantages to the enhancement and maintenance of the field of biomedical engineering. Liver cancer is the major reason of mortality worldwide. Earlier-stage diagnosis and treatment might increase the survival rate of liver cancer patients. Manual recognition of the cancer tissue is a time-consuming and difficult task. Hence, a computer-aided diagnosis (CAD) is employed in decision making procedures for accurate diagnosis and effective treatment. In contrast to classical image-dependent "semantic" feature evaluation from human expertise, deep learning techniques could learn feature representation automatically from sample images using convolutional neural network (CNN). This study introduces a Hybrid Rider Optimization with Deep Learning Driven Biomedical Liver Cancer Detection and Classification (HRO-DLBLCC) model. The proposed HRO-DLBLCC model majorly focuses on the identification of liver cancer in the medical images. To do so, the proposed HRO-DLBLCC model employs preprocessing in two stages, namely, Gabor filtering (GF) based noise removal and watershed transform based segmentation. In addition, the proposed HRO-DLBLCC model involves NAdam optimizer with DenseNet-201 based feature extractor to generate an optimal set of feature vectors. Finally, the HRO algorithm with recurrent neural network-long short-term memory (RNN-LSTM) model is applied for liver cancer classification, in which the hyperparameters of the RNN-LSTM model are tuned by the use of HRO algorithm. The HRO-DLBLCC model is experimentally validated and compared with existing models. The experimental results assured the promising performance of the HRO-DLBLCC model over recent approaches.
Collapse
Affiliation(s)
- Mesfer Al Duhayyim
- Department of Computer Science, College of Sciences and Humanities-Aflaj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Hanan Abdullah Mengash
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Radwa Marzouk
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohamed K Nour
- Department of Computer Sciences, College of Computing and Information System, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Hany Mahgoub
- Department of Computer Science, College of Science & Art at Mahayel, King Khalid University, Abha, Saudi Arabia
- Department of Computer Science, Faculty of Computers and Information, Menoufia University, Shibin Al Kawm, Egypt
| | - Fahd Althukair
- Department of Electrical Engineering and Computer Sciences, College of Engineering, University of CA, Berkeley, USA
| | - Abdullah Mohamed
- Research Center, Future University in Egypt, New Cairo 11845, Egypt
| |
Collapse
|