1
|
Huang K, Liu H, Wu Y, Fan W, Zhao Y, Xue M, Tang Y, Feng ST, Li J. Development and validation of survival prediction models for patients with hepatocellular carcinoma treated with transcatheter arterial chemoembolization plus tyrosine kinase inhibitors. LA RADIOLOGIA MEDICA 2024:10.1007/s11547-024-01890-z. [PMID: 39400683 DOI: 10.1007/s11547-024-01890-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Due to heterogeneity of molecular biology and microenvironment, therapeutic efficacy varies among hepatocellular carcinoma (HCC) patients treated with transcatheter arterial chemoembolization (TACE) and tyrosine kinase inhibitors (TKIs). We examined combined models using clinicoradiological characteristics, mutational burden of signaling pathways, and radiomics features to predict survival prognosis. METHODS Two cohorts comprising 111 patients with HCC were used to build prognostic models. The training and test cohorts included 78 and 33 individuals, respectively. Mutational burden was calculated based on 17 cancer-associated signaling pathways. Radiomic features were extracted and selected from computed tomography images using a pyradiomics system. Models based on clinicoradiological indicators, mutational burden, and radiomics score (rad-score) were built to predict overall survival (OS) and progression-free survival (PFS). RESULTS Eastern Cooperative Oncology Group performance status, Child-Pugh class, peritumoral enhancement, PI3K_AKT and hypoxia mutational burden, and rad-score were used to create a combined model predicting OS. C-indices were 0.805 (training cohort) and 0.768 (test cohort). The areas under the curve (AUCs) were 0.889, 0.900, and 0.917 for 1-year, 2-year, and 3-year OS, respectively. To predict PFS, alpha-fetoprotein level, tumor enhancement pattern, hypoxia and receptor tyrosine kinase mutational burden, and rad-score were used. C-indices were 0.782 (training cohort) and 0.766 (test cohort). AUCs were 0.885 and 0.925 for 6-month and 12-month PFS, respectively. Calibration and decision curve analyses supported the model's accuracy and clinical potential. CONCLUSIONS The nomogram models are hopeful to predict OS and PFS in patients with intermediate-advanced HCC treated with TACE plus TKIs, offering a promising tool for treatment decisions and monitoring patient progress.
Collapse
Affiliation(s)
- Kun Huang
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, China
- Department of Radiology, Guizhou Provincial People's Hospital, No. 83 East Zhongshan Road, Guiyang, 550002, Guizhou, China
| | - Haikuan Liu
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, China
| | - Yanqin Wu
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, China
| | - Wenzhe Fan
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, China
| | - Yue Zhao
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, China
| | - Miao Xue
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, China
| | - Yiyang Tang
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, China
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, China.
| | - Jiaping Li
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
2
|
Liang Y, Wu H, Wei X. Development and validation of a CT-based nomogram for accurate hepatocellular carcinoma detection in high risk patients. Front Oncol 2024; 14:1374373. [PMID: 39165686 PMCID: PMC11333883 DOI: 10.3389/fonc.2024.1374373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024] Open
Abstract
Purpose To establish and validate a CT-based nomogram for accurately detecting HCC in patients at high risk for the disease. Methods A total of 223 patients were divided into training (n=161) and validation (n=62) cohorts between January of 2017 and May of 2022. Logistic analysis was performed, and clinical model and radiological model were developed separately. Finally, a nomogram was established based on clinical and radiological features. All models were evaluated using the area under the curve (AUC). DeLong's test was used to evaluate the differences among these models. Results In the multivariate analysis, gender (p = 0.014), increased Alpha-fetoprotein (AFP) (p = 0.017), non-rim arterial phase hyperenhancement (APHE) (p = 0.011), washout (p = 0.011), and enhancing capsule (p = 0.001) were the independent differential predictors of HCC. A nomogram was formed with well-fitted calibration curves based on these five factors. The area under the curve (AUC) of the nomogram in the training and validation cohorts was 0.961(95%CI: 0.935~0.986) and 0.979 (95% CI: 0.949~1), respectively. The nomogram outperformed the clinical and the radiological models in training and validation cohorts. Conclusion The nomogram incorporating clinical and CT features can be a simple and reliable tool for detecting HCC and achieving risk stratification in patients at high risk for HCC.
Collapse
Affiliation(s)
- Yingying Liang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Department of Radiology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Hongzhen Wu
- Department of Radiology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xinhua Wei
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Department of Radiology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Salehi MA, Harandi H, Mohammadi S, Shahrabi Farahani M, Shojaei S, Saleh RR. Diagnostic Performance of Artificial Intelligence in Detection of Hepatocellular Carcinoma: A Meta-analysis. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1297-1311. [PMID: 38438694 PMCID: PMC11300422 DOI: 10.1007/s10278-024-01058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
Due to the increasing interest in the use of artificial intelligence (AI) algorithms in hepatocellular carcinoma detection, we performed a systematic review and meta-analysis to pool the data on diagnostic performance metrics of AI and to compare them with clinicians' performance. A search in PubMed and Scopus was performed in January 2024 to find studies that evaluated and/or validated an AI algorithm for the detection of HCC. We performed a meta-analysis to pool the data on the metrics of diagnostic performance. Subgroup analysis based on the modality of imaging and meta-regression based on multiple parameters were performed to find potential sources of heterogeneity. The risk of bias was assessed using Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) and Prediction Model Study Risk of Bias Assessment Tool (PROBAST) reporting guidelines. Out of 3177 studies screened, 44 eligible studies were included. The pooled sensitivity and specificity for internally validated AI algorithms were 84% (95% CI: 81,87) and 92% (95% CI: 90,94), respectively. Externally validated AI algorithms had a pooled sensitivity of 85% (95% CI: 78,89) and specificity of 84% (95% CI: 72,91). When clinicians were internally validated, their pooled sensitivity was 70% (95% CI: 60,78), while their pooled specificity was 85% (95% CI: 77,90). This study implies that AI can perform as a diagnostic supplement for clinicians and radiologists by screening images and highlighting regions of interest, thus improving workflow.
Collapse
Affiliation(s)
| | - Hamid Harandi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheil Mohammadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Shayan Shojaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramy R Saleh
- Department of Oncology, McGill University, Montreal, QC, H3A 0G4, Canada
- Division of Medical Oncology, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| |
Collapse
|
4
|
Maino C, Vernuccio F, Cannella R, Franco PN, Giannini V, Dezio M, Pisani AR, Blandino AA, Faletti R, De Bernardi E, Ippolito D, Gatti M, Inchingolo R. Radiomics and liver: Where we are and where we are headed? Eur J Radiol 2024; 171:111297. [PMID: 38237517 DOI: 10.1016/j.ejrad.2024.111297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 02/10/2024]
Abstract
Hepatic diffuse conditions and focal liver lesions represent two of the most common scenarios to face in everyday radiological clinical practice. Thanks to the advances in technology, radiology has gained a central role in the management of patients with liver disease, especially due to its high sensitivity and specificity. Since the introduction of computed tomography (CT) and magnetic resonance imaging (MRI), radiology has been considered the non-invasive reference modality to assess and characterize liver pathologies. In recent years, clinical practice has moved forward to a quantitative approach to better evaluate and manage each patient with a more fitted approach. In this setting, radiomics has gained an important role in helping radiologists and clinicians characterize hepatic pathological entities, in managing patients, and in determining prognosis. Radiomics can extract a large amount of data from radiological images, which can be associated with different liver scenarios. Thanks to its wide applications in ultrasonography (US), CT, and MRI, different studies were focused on specific aspects related to liver diseases. Even if broadly applied, radiomics has some advantages and different pitfalls. This review aims to summarize the most important and robust studies published in the field of liver radiomics, underlying their main limitations and issues, and what they can add to the current and future clinical practice and literature.
Collapse
Affiliation(s)
- Cesare Maino
- Department of Radiology, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy.
| | - Federica Vernuccio
- Institute of Radiology, University Hospital of Padova, Padova 35128, Italy
| | - Roberto Cannella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo 90127, Italy
| | - Paolo Niccolò Franco
- Department of Radiology, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy
| | - Valentina Giannini
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Michele Dezio
- Department of Radiology, Miulli Hospital, Acquaviva delle Fonti 70021, Bari, Italy
| | - Antonio Rosario Pisani
- Nuclear Medicine Unit, Interdisciplinary Department of Medicine, University of Bari, Bari 70121, Italy
| | - Antonino Andrea Blandino
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo 90127, Italy
| | - Riccardo Faletti
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Elisabetta De Bernardi
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre - B4, University of Milano Bicocca, Milano 20100, Italy; School of Medicine, University of Milano Bicocca, Milano 20100, Italy
| | - Davide Ippolito
- Department of Radiology, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy; School of Medicine, University of Milano Bicocca, Milano 20100, Italy
| | - Marco Gatti
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Riccardo Inchingolo
- Unit of Interventional Radiology, F. Miulli Hospital, Acquaviva delle Fonti 70021, Italy
| |
Collapse
|
5
|
Anichini M, Galluzzo A, Danti G, Grazzini G, Pradella S, Treballi F, Bicci E. Focal Lesions of the Liver and Radiomics: What Do We Know? Diagnostics (Basel) 2023; 13:2591. [PMID: 37568954 PMCID: PMC10417608 DOI: 10.3390/diagnostics13152591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Despite differences in pathological analysis, focal liver lesions are not always distinguishable in contrast-enhanced magnetic resonance imaging (MRI), contrast-enhanced computed tomography (CT), and positron emission tomography (PET). This issue can cause problems of differential diagnosis, treatment, and follow-up, especially in patients affected by HBV/HCV chronic liver disease or fatty liver disease. Radiomics is an innovative imaging approach that extracts and analyzes non-visible quantitative imaging features, supporting the radiologist in the most challenging differential diagnosis when the best-known methods are not conclusive. The purpose of this review is to evaluate the most significant CT and MRI texture features, which can discriminate between the main benign and malignant focal liver lesions and can be helpful to predict the response to pharmacological or surgical therapy and the patient's prognosis.
Collapse
Affiliation(s)
| | | | - Ginevra Danti
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy; (M.A.); (A.G.); (G.G.); (S.P.); (F.T.); (E.B.)
| | | | | | | | | |
Collapse
|
6
|
Qi YM, Xiao EH. Advances in application of novel magnetic resonance imaging technologies in liver disease diagnosis. World J Gastroenterol 2023; 29:4384-4396. [PMID: 37576700 PMCID: PMC10415971 DOI: 10.3748/wjg.v29.i28.4384] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
Liver disease is a major health concern globally, with high morbidity and mor-tality rates. Precise diagnosis and assessment are vital for guiding treatment approaches, predicting outcomes, and improving patient prognosis. Magnetic resonance imaging (MRI) is a non-invasive diagnostic technique that has been widely used for detecting liver disease. Recent advancements in MRI technology, such as diffusion weighted imaging, intravoxel incoherent motion, magnetic resonance elastography, chemical exchange saturation transfer, magnetic resonance spectroscopy, hyperpolarized MR, contrast-enhanced MRI, and ra-diomics, have significantly improved the accuracy and effectiveness of liver disease diagnosis. This review aims to discuss the progress in new MRI technologies for liver diagnosis. By summarizing current research findings, we aim to provide a comprehensive reference for researchers and clinicians to optimize the use of MRI in liver disease diagnosis and improve patient prognosis.
Collapse
Affiliation(s)
- Yi-Ming Qi
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha 410000, Hunan Province, China
| | - En-Hua Xiao
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha 410000, Hunan Province, China
| |
Collapse
|
7
|
Miranda J, Horvat N, Fonseca GM, Araujo-Filho JDAB, Fernandes MC, Charbel C, Chakraborty J, Coelho FF, Nomura CH, Herman P. Current status and future perspectives of radiomics in hepatocellular carcinoma. World J Gastroenterol 2023; 29:43-60. [PMID: 36683711 PMCID: PMC9850949 DOI: 10.3748/wjg.v29.i1.43] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/27/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023] Open
Abstract
Given the frequent co-existence of an aggressive tumor and underlying chronic liver disease, the management of hepatocellular carcinoma (HCC) patients requires experienced multidisciplinary team discussion. Moreover, imaging plays a key role in the diagnosis, staging, restaging, and surveillance of HCC. Currently, imaging assessment of HCC entails the assessment of qualitative characteristics which are prone to inter-reader variability. Radiomics is an emerging field that extracts high-dimensional mineable quantitative features that cannot be assessed visually with the naked eye from medical imaging. The main potential applications of radiomic models in HCC are to predict histology, response to treatment, genetic signature, recurrence, and survival. Despite the encouraging results to date, there are challenges and limitations that need to be overcome before radiomics implementation in clinical practice. The purpose of this article is to review the main concepts and challenges pertaining to radiomics, and to review recent studies and potential applications of radiomics in HCC.
Collapse
Affiliation(s)
- Joao Miranda
- Department of Radiology, University of Sao Paulo, Sao Paulo 05403-010, Brazil
| | - Natally Horvat
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States
| | | | | | - Maria Clara Fernandes
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States
| | - Charlotte Charbel
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States
| | - Jayasree Chakraborty
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States
| | | | - Cesar Higa Nomura
- Department of Radiology, University of Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Paulo Herman
- Department of Gastroenterology, University of Sao Paulo, Sao Paulo 05403-000, Brazil
| |
Collapse
|
8
|
Tao YY, Shi Y, Gong XQ, Li L, Li ZM, Yang L, Zhang XM. Radiomic Analysis Based on Magnetic Resonance Imaging for Predicting PD-L2 Expression in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:cancers15020365. [PMID: 36672315 PMCID: PMC9856314 DOI: 10.3390/cancers15020365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common malignant tumour and the third leading cause of cancer death in the world. The emerging field of radiomics involves extracting many clinical image features that cannot be recognized by the human eye to provide information for precise treatment decision making. Radiomics has shown its importance in HCC identification, histological grading, microvascular invasion (MVI) status, treatment response, and prognosis, but there is no report on the preoperative prediction of programmed death ligand-2 (PD-L2) expression in HCC. The purpose of this study was to investigate the value of MRI radiomic features for the non-invasive prediction of immunotherapy target PD-L2 expression in hepatocellular carcinoma (HCC). A total of 108 patients with HCC confirmed by pathology were retrospectively analysed. Immunohistochemical analysis was used to evaluate the expression level of PD-L2. 3D-Slicer software was used to manually delineate volumes of interest (VOIs) and extract radiomic features on preoperative T2-weighted, arterial-phase, and portal venous-phase MR images. Least absolute shrinkage and selection operator (LASSO) was performed to find the best radiomic features. Multivariable logistic regression models were constructed and validated using fivefold cross-validation. The area under the receiver characteristic curve (AUC) was used to evaluate the predictive performance of each model. The results show that among the 108 cases of HCC, 50 cases had high PD-L2 expression, and 58 cases had low PD-L2 expression. Radiomic features correlated with PD-L2 expression. The T2-weighted, arterial-phase, and portal venous-phase and combined MRI radiomics models showed AUCs of 0.789 (95% CI: 0.702-0.875), 0.727 (95% CI: 0.632-0.823), 0.770 (95% CI: 0.682-0.875), and 0.871 (95% CI: 0.803-0.939), respectively. The combined model showed the best performance. The results of this study suggest that prediction based on the radiomic characteristics of MRI could noninvasively predict the expression of PD-L2 in HCC before surgery and provide a reference for the selection of immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Yun-Yun Tao
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Yue Shi
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Xue-Qin Gong
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Li Li
- Department of Pathology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Zu-Mao Li
- Department of Pathology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Lin Yang
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
- Correspondence:
| | - Xiao-Ming Zhang
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| |
Collapse
|