1
|
Li J, Jiang P, An Q, Wang GG, Kong HF. Medical image identification methods: A review. Comput Biol Med 2024; 169:107777. [PMID: 38104516 DOI: 10.1016/j.compbiomed.2023.107777] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/30/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023]
Abstract
The identification of medical images is an essential task in computer-aided diagnosis, medical image retrieval and mining. Medical image data mainly include electronic health record data and gene information data, etc. Although intelligent imaging provided a good scheme for medical image analysis over traditional methods that rely on the handcrafted features, it remains challenging due to the diversity of imaging modalities and clinical pathologies. Many medical image identification methods provide a good scheme for medical image analysis. The concepts pertinent of methods, such as the machine learning, deep learning, convolutional neural networks, transfer learning, and other image processing technologies for medical image are analyzed and summarized in this paper. We reviewed these recent studies to provide a comprehensive overview of applying these methods in various medical image analysis tasks, such as object detection, image classification, image registration, segmentation, and other tasks. Especially, we emphasized the latest progress and contributions of different methods in medical image analysis, which are summarized base on different application scenarios, including classification, segmentation, detection, and image registration. In addition, the applications of different methods are summarized in different application area, such as pulmonary, brain, digital pathology, brain, skin, lung, renal, breast, neuromyelitis, vertebrae, and musculoskeletal, etc. Critical discussion of open challenges and directions for future research are finally summarized. Especially, excellent algorithms in computer vision, natural language processing, and unmanned driving will be applied to medical image recognition in the future.
Collapse
Affiliation(s)
- Juan Li
- School of Information Engineering, Wuhan Business University, Wuhan, 430056, China; School of Artificial Intelligence, Wuchang University of Technology, Wuhan, 430223, China; Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012, China
| | - Pan Jiang
- School of Information Engineering, Wuhan Business University, Wuhan, 430056, China
| | - Qing An
- School of Artificial Intelligence, Wuchang University of Technology, Wuhan, 430223, China
| | - Gai-Ge Wang
- School of Computer Science and Technology, Ocean University of China, Qingdao, 266100, China.
| | - Hua-Feng Kong
- School of Information Engineering, Wuhan Business University, Wuhan, 430056, China.
| |
Collapse
|
2
|
Tsilivigkos C, Athanasopoulos M, Micco RD, Giotakis A, Mastronikolis NS, Mulita F, Verras GI, Maroulis I, Giotakis E. Deep Learning Techniques and Imaging in Otorhinolaryngology-A State-of-the-Art Review. J Clin Med 2023; 12:6973. [PMID: 38002588 PMCID: PMC10672270 DOI: 10.3390/jcm12226973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Over the last decades, the field of medicine has witnessed significant progress in artificial intelligence (AI), the Internet of Medical Things (IoMT), and deep learning (DL) systems. Otorhinolaryngology, and imaging in its various subspecialties, has not remained untouched by this transformative trend. As the medical landscape evolves, the integration of these technologies becomes imperative in augmenting patient care, fostering innovation, and actively participating in the ever-evolving synergy between computer vision techniques in otorhinolaryngology and AI. To that end, we conducted a thorough search on MEDLINE for papers published until June 2023, utilizing the keywords 'otorhinolaryngology', 'imaging', 'computer vision', 'artificial intelligence', and 'deep learning', and at the same time conducted manual searching in the references section of the articles included in our manuscript. Our search culminated in the retrieval of 121 related articles, which were subsequently subdivided into the following categories: imaging in head and neck, otology, and rhinology. Our objective is to provide a comprehensive introduction to this burgeoning field, tailored for both experienced specialists and aspiring residents in the domain of deep learning algorithms in imaging techniques in otorhinolaryngology.
Collapse
Affiliation(s)
- Christos Tsilivigkos
- 1st Department of Otolaryngology, National and Kapodistrian University of Athens, Hippocrateion Hospital, 115 27 Athens, Greece; (A.G.); (E.G.)
| | - Michail Athanasopoulos
- Department of Otolaryngology, University Hospital of Patras, 265 04 Patras, Greece; (M.A.); (N.S.M.)
| | - Riccardo di Micco
- Department of Otolaryngology and Head and Neck Surgery, Medical School of Hannover, 30625 Hannover, Germany;
| | - Aris Giotakis
- 1st Department of Otolaryngology, National and Kapodistrian University of Athens, Hippocrateion Hospital, 115 27 Athens, Greece; (A.G.); (E.G.)
| | - Nicholas S. Mastronikolis
- Department of Otolaryngology, University Hospital of Patras, 265 04 Patras, Greece; (M.A.); (N.S.M.)
| | - Francesk Mulita
- Department of Surgery, University Hospital of Patras, 265 04 Patras, Greece; (G.-I.V.); (I.M.)
| | - Georgios-Ioannis Verras
- Department of Surgery, University Hospital of Patras, 265 04 Patras, Greece; (G.-I.V.); (I.M.)
| | - Ioannis Maroulis
- Department of Surgery, University Hospital of Patras, 265 04 Patras, Greece; (G.-I.V.); (I.M.)
| | - Evangelos Giotakis
- 1st Department of Otolaryngology, National and Kapodistrian University of Athens, Hippocrateion Hospital, 115 27 Athens, Greece; (A.G.); (E.G.)
| |
Collapse
|
3
|
Deng Y, Huang Y, Jing B, Wu H, Qiu W, Chen H, Li B, Guo X, Xie C, Sun Y, Dai X, Lv X, Li C, Ke L. Deep learning-based recurrence detector on magnetic resonance scans in nasopharyngeal carcinoma: A multicenter study. Eur J Radiol 2023; 168:111084. [PMID: 37722143 DOI: 10.1016/j.ejrad.2023.111084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/18/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023]
Abstract
OBJECTIVES Accuracy in the detection of recurrent nasopharyngeal carcinoma (NPC) on follow-up magnetic resonance (MR) scans needs to be improved. MATERIAL AND METHODS A total of 5 035 follow-up MR scans from 5 035 survivors with treated NPC between April 2007 and July 2020 were retrospectively collected from three cancer centers for developing and evaluating the deep learning (DL) model MODERN (MR-based Deep learning model for dEtecting Recurrent Nasopharyngeal carcinoma). In a reader study with 220 scans, the accuracy of two radiologists in detecting recurrence on scans with vs without MODERN was evaluated. The performance was measured using the area under the receiver operating characteristic curve (ROC-AUC) and accuracy with a 95% confidence interval (CI). RESULTS MODERN exhibited sound performance in the validation cohort (internal: ROC-AUC, 0.88, 95% CI, 0.86-0.90; external 1: ROC-AUC, 0.88, 95% CI, 0.86-0.90; external 2: ROC-AUC, 0.85, 95% CI, 0.82-0.88). In a reader study, MODERN alone achieved reliable accuracy compared to that of radiologists (MODERN: 84.1%, 95% CI, 79.3%-88.9%; competent: 80.9%, 95% CI, 75.7%-86.1%, P < 0.001; expert: 85.9%, 95% CI, 81.3%-90.5%, P < 0.001). The accuracy of radiologists was boosted by the MODERN score (competent with MODERN score: 84.6%, 95% CI, 79.8%-89.3%, P < 0.001; expert with MODERN score: 87.7%, 95% CI, 83.4%-92.1%, P < 0.001). CONCLUSION We developed a DL model for recurrence detection with reliable performance. Computer-human collaboration has the potential to refine the workflow in interpreting surveillant MR scans among patients with treated NPC.
Collapse
Affiliation(s)
- Yishu Deng
- School of Electronics and Information Technology, Sun Yat-sen University, No. 132 Waihuan East Road, Guangzhou 510006, Guangdong, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou 510060, Guangdong, China; Department of Information, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou 510060, Guangdong, China
| | - Yingying Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou 510060, Guangdong, China; Department of Radiology, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou 510060, Guangdong, China
| | - Bingzhong Jing
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou 510060, Guangdong, China; Department of Information, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou 510060, Guangdong, China
| | - Haijun Wu
- Department of Radiation Oncology, First People's Hospital of Foshan, No. 81 Lingnan North Road, Foshan 528000, Guangdong, China
| | - Wenze Qiu
- Department of Radiation Oncology, Guangzhou Medical University Affiliated Cancer Hospital, No. 78 Hengzhigang Road, Guangzhou 510030, Guangdong, China
| | - Haohua Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou 510060, Guangdong, China; Department of Information, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou 510060, Guangdong, China
| | - Bin Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou 510060, Guangdong, China; Department of Information, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou 510060, Guangdong, China
| | - Xiang Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou 510060, Guangdong, China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou 510060, Guangdong, China
| | - Chuanmiao Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou 510060, Guangdong, China; Department of Radiology, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou 510060, Guangdong, China
| | - Ying Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou 510060, Guangdong, China; Department of Radiation Oncology, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou 510060, Guangdong, China
| | - Xianhua Dai
- School of Electronics and Information Technology, Sun Yat-sen University, No. 132 Waihuan East Road, Guangzhou 510006, Guangdong, China
| | - Xing Lv
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou 510060, Guangdong, China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou 510060, Guangdong, China.
| | - Chaofeng Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou 510060, Guangdong, China; Department of Information, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou 510060, Guangdong, China.
| | - Liangru Ke
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou 510060, Guangdong, China; Department of Radiology, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou 510060, Guangdong, China.
| |
Collapse
|
4
|
Hossain MB, Kwon KC, Shinde RK, Imtiaz SM, Kim N. A Hybrid Residual Attention Convolutional Neural Network for Compressed Sensing Magnetic Resonance Image Reconstruction. Diagnostics (Basel) 2023; 13:diagnostics13071306. [PMID: 37046524 PMCID: PMC10093476 DOI: 10.3390/diagnostics13071306] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
We propose a dual-domain deep learning technique for accelerating compressed sensing magnetic resonance image reconstruction. An advanced convolutional neural network with residual connectivity and an attention mechanism was developed for frequency and image domains. First, the sensor domain subnetwork estimates the unmeasured frequencies of k-space to reduce aliasing artifacts. Second, the image domain subnetwork performs a pixel-wise operation to remove blur and noisy artifacts. The skip connections efficiently concatenate the feature maps to alleviate the vanishing gradient problem. An attention gate in each decoder layer enhances network generalizability and speeds up image reconstruction by eliminating irrelevant activations. The proposed technique reconstructs real-valued clinical images from sparsely sampled k-spaces that are identical to the reference images. The performance of this novel approach was compared with state-of-the-art direct mapping, single-domain, and multi-domain methods. With acceleration factors (AFs) of 4 and 5, our method improved the mean peak signal-to-noise ratio (PSNR) to 8.67 and 9.23, respectively, compared with the single-domain Unet model; similarly, our approach increased the average PSNR to 3.72 and 4.61, respectively, compared with the multi-domain W-net. Remarkably, using an AF of 6, it enhanced the PSNR by 9.87 ± 1.55 and 6.60 ± 0.38 compared with Unet and W-net, respectively.
Collapse
|