1
|
Alajaji SA, Amarin R, Masri R, Tavares T, Kumar V, Price JB, Sultan AS. Detection of extracranial and intracranial calcified carotid artery atheromas in cone beam computed tomography using a deep learning convolutional neural network image segmentation approach. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 138:162-172. [PMID: 37770329 DOI: 10.1016/j.oooo.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/16/2023] [Accepted: 08/04/2023] [Indexed: 09/30/2023]
Abstract
OBJECTIVE We leveraged an artificial intelligence deep-learning convolutional neural network (DL CNN) to detect calcified carotid artery atheromas (CCAAs) on cone beam computed tomography (CBCT) images. STUDY DESIGN We obtained 137 full-volume CBCT scans with previously diagnosed CCAAs. The DL model was trained on 170 single axial CBCT slices, 90 with extracranial CCAAs and 80 with intracranial CCAAs. A board-certified oral and maxillofacial radiologist confirmed the presence of each CCAA. Transfer learning through a U-Net-based CNN architecture was utilized. Data allocation was 60% training, 10% validation, and 30% testing. We determined the accuracy of the DL model in detecting CCAA by calculating the mean training and validation accuracy and the area under the receiver operating characteristic curve (AUC). We reserved 5 randomly selected unseen full CBCT volumes for final testing. RESULTS The mean training and validation accuracy of the model in detecting extracranial CCAAs was 92% and 82%, respectively, and the AUC was 0.84 with 1.0 sensitivity and 0.69 specificity. The mean training and validation accuracy in detecting intracranial CCAAs was 61% and 70%, respectively, and the AUC was 0.5 with 0.93 sensitivity and 0.08 specificity. Testing of full-volume scans yielded an AUC of 0.72 and 0.55 for extracranial and intracranial CCAAs, respectively. CONCLUSION Our DL model showed excellent discrimination in detecting extracranial CCAAs on axial CBCT images and acceptable discrimination on full-volumes but poor discrimination in detecting intracranial CCAAs, for which further research is required.
Collapse
Affiliation(s)
- Shahd A Alajaji
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland Baltimore, MD, USA; Division of Artificial Intelligence Research, University of Maryland School of Dentistry, Baltimore, MD, USA; Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Rula Amarin
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Radi Masri
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Tiffany Tavares
- Department of Comprehensive Dentistry, UT Health San Antonio, School of Dentistry, San Antonio, TX, USA
| | - Vandana Kumar
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland Baltimore, MD, USA
| | - Jeffery B Price
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland Baltimore, MD, USA; Division of Artificial Intelligence Research, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Ahmed S Sultan
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland Baltimore, MD, USA; Division of Artificial Intelligence Research, University of Maryland School of Dentistry, Baltimore, MD, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
2
|
Tyndall DA, Price JB, Gaalaas L, Spin-Neto R. Surveying the landscape of diagnostic imaging in dentistry's future: Four emerging technologies with promise. J Am Dent Assoc 2024; 155:364-378. [PMID: 38520421 DOI: 10.1016/j.adaj.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Advances in digital radiography for both intraoral and panoramic imaging and cone-beam computed tomography have led the way to an increase in diagnostic capabilities for the dental care profession. In this article, the authors provide information on 4 emerging technologies with promise. TYPES OF STUDIES REVIEWED The authors feature the following: artificial intelligence in the form of deep learning using convolutional neural networks, dental magnetic resonance imaging, stationary intraoral tomosynthesis, and second-generation cone-beam computed tomography sources based on carbon nanotube technology and multispectral imaging. The authors review and summarize articles featuring these technologies. RESULTS The history and background of these emerging technologies are previewed along with their development and potential impact on the practice of dental diagnostic imaging. The authors conclude that these emerging technologies have the potential to have a substantial influence on the practice of dentistry as these systems mature. The degree of influence most likely will vary, with artificial intelligence being the most influential of the 4. CONCLUSIONS AND PRACTICAL IMPLICATIONS The readers are informed about these emerging technologies and the potential effects on their practice going forward, giving them information on which to base decisions on adopting 1 or more of these technologies. The 4 technologies reviewed in this article have the potential to improve imaging diagnostics in dentistry thereby leading to better patient care and heightened professional satisfaction.
Collapse
|
3
|
Wulamu A, Luo J, Chen S, Zheng H, Wang T, Yang R, Jiao L, Zhang T. CASMatching strategy for automated detection and quantification of carotid artery stenosis based on digital subtraction angiography. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 243:107871. [PMID: 37925855 DOI: 10.1016/j.cmpb.2023.107871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/16/2023] [Accepted: 10/15/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Automated detection and quantification of carotid artery stenosis is a crucial task in establishing a computer-aided diagnostic system for brain diseases. Digital subtraction angiography (DSA) is known as the "gold standard" for carotid stenosis diagnosis. It is commonly used to identify carotid artery stenosis and measure morphological indices of the stenosis. However, using deep learning to detect stenosis based on DSA images and further quantitatively predicting the morphological indices remain a challenge due the absence of prior work. In this paper, we propose a quantitative method for predicting morphological indices of carotid stenosis. METHODS Our method adopts a two-stage pipeline, first locating regions suitable for predicting morphological indices by object detection model, and then using a regression model to predict indices. A novel Carotid Artery Stenosis Matching (CASMatching) strategy is introduced into the object detection to model the matching relationship between a stenosis and multiple normal vessel segments. The proposed Match-ness branch predicts a Match-ness score for each normal vessel segment to indicate the degree of matching to the stenosis. A novel Direction Distance-IoU (2DIoU) loss based on the Distance-IoU loss is proposed to make the model focused more on the bounding box regression in the direction of vessel extension. After detection, the normal vessel segment with the highest Match-ness score and the stenosis are intercepted from the original image, then fed into a regression model to predict morphological indices and calculate the degree of stenosis. RESULTS Our method is trained and evaluated on a dataset collected from three different manufacturers' monoplane X-ray systems. The results show that the proposed components in the object detector substantially improve the detection performance of normal vascular segments. For the prediction of morphological indices, our model achieves Mean Absolute Error of 0.378, 0.221, 4.9 on reference vessel diameter (RVD), minimum lumen diameter (MLD) and stenosis degree. CONCLUSIONS Our method can precisely localize the carotid stenosis and the normal vessel segment suitable for predicting RVD of the stenosis, and further achieve accurate quantification, providing a novel solution for the quantification of carotid artery stenosis.
Collapse
Affiliation(s)
- Aziguli Wulamu
- Department of Computer, School of Computer and Communication Engineering, University of Science and Technology Beijing (USTB), Beijing, China; Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing, China.
| | - Jichang Luo
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute (China-INI), Beijing, China
| | - Saian Chen
- Department of Computer, School of Computer and Communication Engineering, University of Science and Technology Beijing (USTB), Beijing, China; Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing, China
| | - Han Zheng
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of AI and Information Processing (Hechi University), Hechi, Guangxi 546300, China.
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute (China-INI), Beijing, China
| | - Renjie Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute (China-INI), Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute (China-INI), Beijing, China; Department of Interventional Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Taohong Zhang
- Department of Computer, School of Computer and Communication Engineering, University of Science and Technology Beijing (USTB), Beijing, China; Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing, China.
| |
Collapse
|
4
|
Hadzic A, Urschler M, Press JNA, Riedl R, Rugani P, Štern D, Kirnbauer B. Evaluating a Periapical Lesion Detection CNN on a Clinically Representative CBCT Dataset-A Validation Study. J Clin Med 2023; 13:197. [PMID: 38202204 PMCID: PMC10779652 DOI: 10.3390/jcm13010197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
The aim of this validation study was to comprehensively evaluate the performance and generalization capability of a deep learning-based periapical lesion detection algorithm on a clinically representative cone-beam computed tomography (CBCT) dataset and test for non-inferiority. The evaluation involved 195 CBCT images of adult upper and lower jaws, where sensitivity and specificity metrics were calculated for all teeth, stratified by jaw, and stratified by tooth type. Furthermore, each lesion was assigned a periapical index score based on its size to enable a score-based evaluation. Non-inferiority tests were conducted with proportions of 90% for sensitivity and 82% for specificity. The algorithm achieved an overall sensitivity of 86.7% and a specificity of 84.3%. The non-inferiority test indicated the rejection of the null hypothesis for specificity but not for sensitivity. However, when excluding lesions with a periapical index score of one (i.e., very small lesions), the sensitivity improved to 90.4%. Despite the challenges posed by the dataset, the algorithm demonstrated promising results. Nevertheless, further improvements are needed to enhance the algorithm's robustness, particularly in detecting very small lesions and the handling of artifacts and outliers commonly encountered in real-world clinical scenarios.
Collapse
Affiliation(s)
- Arnela Hadzic
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, 8036 Graz, Austria; (A.H.); (R.R.)
| | - Martin Urschler
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, 8036 Graz, Austria; (A.H.); (R.R.)
| | - Jan-Niclas Aaron Press
- Division of Oral Surgery and Orthodontics, Medical University of Graz, 8010 Graz, Austria (P.R.); (B.K.)
| | - Regina Riedl
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, 8036 Graz, Austria; (A.H.); (R.R.)
| | - Petra Rugani
- Division of Oral Surgery and Orthodontics, Medical University of Graz, 8010 Graz, Austria (P.R.); (B.K.)
| | - Darko Štern
- Institute of Computer Graphics and Vision, Graz University of Technology, 8010 Graz, Austria
| | - Barbara Kirnbauer
- Division of Oral Surgery and Orthodontics, Medical University of Graz, 8010 Graz, Austria (P.R.); (B.K.)
| |
Collapse
|