1
|
Zheng TL, Sha JC, Deng Q, Geng S, Xiao SY, Yang WJ, Byrne CD, Targher G, Li YY, Wang XX, Wu D, Zheng MH. Object detection: A novel AI technology for the diagnosis of hepatocyte ballooning. Liver Int 2024; 44:330-343. [PMID: 38014574 DOI: 10.1111/liv.15799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/02/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has reached epidemic proportions worldwide and is the most frequent cause of chronic liver disease in developed countries. Within the spectrum of liver disease in MAFLD, steatohepatitis is a progressive form of liver disease and hepatocyte ballooning (HB) is a cardinal pathological feature of steatohepatitis. The accurate and reproducible diagnosis of HB is therefore critical for the early detection and treatment of steatohepatitis. Currently, a diagnosis of HB relies on pathological examination by expert pathologists, which may be a time-consuming and subjective process. Hence, there has been interest in developing automated methods for diagnosing HB. This narrative review briefly discusses the development of artificial intelligence (AI) technology for diagnosing fatty liver disease pathology over the last 30 years and provides an overview of the current research status of AI algorithms for the identification of HB, including published articles on traditional machine learning algorithms and deep learning algorithms. This narrative review also provides a summary of object detection algorithms, including the principles, historical developments, and applications in the medical image analysis. The potential benefits of object detection algorithms for HB diagnosis (specifically those combined with a transformer architecture) are discussed, along with the future directions of object detection algorithms in HB diagnosis and the potential applications of generative AI on transformer architecture in this field. In conclusion, object detection algorithms have huge potential for the identification of HB and could make the diagnosis of MAFLD more accurate and efficient in the near future.
Collapse
Affiliation(s)
- Tian-Lei Zheng
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
- Artificial Intelligence Unit, Department of Medical Equipment Management, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jun-Cheng Sha
- Department of Interventional Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qian Deng
- Department of Histopathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, China
| | - Shi Geng
- Artificial Intelligence Unit, Department of Medical Equipment Management, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shu-Yuan Xiao
- Department of Pathology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Wen-Jun Yang
- Department of Pathology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Christopher D Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, and University of Southampton, Southampton, UK
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- IRCSS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Yang-Yang Li
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiang-Xue Wang
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China
| | - Di Wu
- Department of Pathology, Xuzhou Central Hospital, Xuzhou, China
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| |
Collapse
|
2
|
He S, Zou Y, Li B, Peng F, Lu X, Guo H, Tan X, Chen Y. An image inpainting-based data augmentation method for improved sclerosed glomerular identification performance with the segmentation model EfficientNetB3-Unet. Sci Rep 2024; 14:1033. [PMID: 38200109 PMCID: PMC10781987 DOI: 10.1038/s41598-024-51651-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/08/2024] [Indexed: 01/12/2024] Open
Abstract
The percent global glomerulosclerosis is a key factor in determining the outcome of renal transfer surgery. At present, the rate is typically computed by pathologists, which is labour intensive and nonstandardized. With the development of Deep Learning (DL), DL-based segmentation models can be used to better identify and segment normal and sclerosed glomeruli. Based on this, we can better quantify percent global glomerulosclerosis to reduce the discard rate of donor kidneys. We used 51 whole slide images (WSIs) from different institutions that are publicly available on the internet. However, the number of sclerosed glomeruli is much smaller than that of normal glomeruli in different WSIs, which can reduce the effectiveness of Deep Learning. For better sclerosed glomerular identification and segmentation performance, we modified and trained a GAN (generative adversarial network)-based image inpainting model to obtain more synthetic sclerosed glomeruli. Our proposed inpainting method achieved an average SSIM (Structural Similarity) of 0.8086 and an average PSNR (Peak Signal-to-Noise Ratio) of 22.8943 dB in the area of generated sclerosed glomeruli. We obtained sclerosed glomerular segmentation performance improvement by adding synthetic sclerosed glomerular images and achieved the best Dice of glomerular segmentation in different test sets based on the modified Unet model.
Collapse
Affiliation(s)
- Songping He
- Digital Manufacturing Equipment National Engineering Research Center, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zou
- National NC System Engineering Research Center, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Li
- Digital Manufacturing Equipment National Engineering Research Center, Huazhong University of Science and Technology, Wuhan, China
| | - Fangyu Peng
- National NC System Engineering Research Center, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Lu
- Key Laboratory of Organ Transplantation of Ministry of Education, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, National Health Commission and Chinese Academy of Medical Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Guo
- Key Laboratory of Organ Transplantation of Ministry of Education, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, National Health Commission and Chinese Academy of Medical Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Tan
- Wuhan Intelligent Equipment Industrial Institute Co Ltd, Wuhan, China
| | - Yanyan Chen
- Department of Information Management, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Altini N, Rossini M, Turkevi-Nagy S, Pesce F, Pontrelli P, Prencipe B, Berloco F, Seshan S, Gibier JB, Pedraza Dorado A, Bueno G, Peruzzi L, Rossi M, Eccher A, Li F, Koumpis A, Beyan O, Barratt J, Vo HQ, Mohan C, Nguyen HV, Cicalese PA, Ernst A, Gesualdo L, Bevilacqua V, Becker JU. Performance and limitations of a supervised deep learning approach for the histopathological Oxford Classification of glomeruli with IgA nephropathy. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 242:107814. [PMID: 37722311 DOI: 10.1016/j.cmpb.2023.107814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND AND OBJECTIVE The Oxford Classification for IgA nephropathy is the most successful example of an evidence-based nephropathology classification system. The aim of our study was to replicate the glomerular components of Oxford scoring with an end-to-end deep learning pipeline that involves automatic glomerular segmentation followed by classification for mesangial hypercellularity (M), endocapillary hypercellularity (E), segmental sclerosis (S) and active crescents (C). METHODS A total number of 1056 periodic acid-Schiff (PAS) whole slide images (WSIs), coming from 386 kidney biopsies, were annotated. Several detection models for glomeruli, based on the Mask R-CNN architecture, were trained on 587 WSIs, validated on 161 WSIs, and tested on 127 WSIs. For the development of segmentation models, 20,529 glomeruli were annotated, of which 16,571 as training and 3958 as validation set. The test set of the segmentation module comprised of 2948 glomeruli. For the Oxford classification, 6206 expert-annotated glomeruli from 308 PAS WSIs were labelled for M, E, S, C and split into a training set of 4298 glomeruli from 207 WSIs, and a test set of 1908 glomeruli. We chose the best-performing models to construct an end-to-end pipeline, which we named MESCnn (MESC classification by neural network), for the glomerular Oxford classification of WSIs. RESULTS Instance segmentation yielded excellent results with an AP50 ranging between 78.2-80.1 % (79.4 ± 0.7 %) on the validation and 75.1-77.7 % (76.5 ± 0.9 %) on the test set. The aggregated Jaccard Index was between 73.4-75.9 % (75.0 ± 0.8 %) on the validation and 69.1-73.4 % (72.2 ± 1.4 %) on the test set. At granular glomerular level, Oxford Classification was best replicated for M with EfficientNetV2-L with a mean ROC-AUC of 90.2 % and a mean precision/recall area under the curve (PR-AUC) of 81.8 %, best for E with MobileNetV2 (ROC-AUC 94.7 %) and ResNet50 (PR-AUC 75.8 %), best for S with EfficientNetV2-M (mean ROC-AUC 92.7 %, mean PR-AUC 87.7 %), best for C with EfficientNetV2-L (ROC-AUC 92.3 %) and EfficientNetV2-S (PR-AUC 54.7 %). At biopsy-level, correlation between expert and deep learning labels fulfilled the demands of the Oxford Classification. CONCLUSION We designed an end-to-end pipeline for glomerular Oxford Classification on both a granular glomerular and an entire biopsy level. Both the glomerular segmentation and the classification modules are freely available for further development to the renal medicine community.
Collapse
Affiliation(s)
- Nicola Altini
- Department of Electrical and Information Engineering (DEI), Polytechnic University of Bari, Via Edoardo Orabona n.4, Bari 70126, Italy
| | - Michele Rossini
- Nephrology Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Sándor Turkevi-Nagy
- Department of Pathology, Albert Szent-Györgyi Health Center, University of Szeged, Szeged, Hungary
| | - Francesco Pesce
- Nephrology Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy; Division of Renal Medicine, "Fatebenefratelli Isola Tiberina - Gemelli Isola", Rome, Italy
| | - Paola Pontrelli
- Nephrology Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Berardino Prencipe
- Department of Electrical and Information Engineering (DEI), Polytechnic University of Bari, Via Edoardo Orabona n.4, Bari 70126, Italy
| | - Francesco Berloco
- Department of Electrical and Information Engineering (DEI), Polytechnic University of Bari, Via Edoardo Orabona n.4, Bari 70126, Italy
| | - Surya Seshan
- Department of Pathology, Weill-Cornell Medical Center/New York Presbyterian Hospital, New York, NY, USA
| | - Jean-Baptiste Gibier
- Department of Pathology, Pathology Institute, Lille University Hospital (CHU), Lille, France
| | | | - Gloria Bueno
- VISILAB Research Group, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Licia Peruzzi
- AOU Città della Salute e della Scienza di Torino, Regina Margherita Children's Hospital, Turin, Italy
| | - Mattia Rossi
- Division of Nephrology, Department of Medicine, University of Verona, Verona, Italy
| | - Albino Eccher
- Section of Pathology, Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Feifei Li
- Faculty of Medicine, University Hospital Cologne, University of Cologne, Institute for Medical Informatics, Cologne, Germany
| | - Adamantios Koumpis
- Faculty of Medicine, University Hospital Cologne, University of Cologne, Institute for Medical Informatics, Cologne, Germany
| | - Oya Beyan
- Faculty of Medicine, University Hospital Cologne, University of Cologne, Institute for Medical Informatics, Cologne, Germany
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Huy Quoc Vo
- Department of Biomedical Engineering, University of Houston, Houston, USA
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, USA
| | - Hien Van Nguyen
- Department of Biomedical Engineering, University of Houston, Houston, USA
| | | | - Angela Ernst
- Institute of Medical Statistics and Computational Biology, University of Cologne, Cologne, Germany
| | - Loreto Gesualdo
- Nephrology Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Vitoantonio Bevilacqua
- Department of Electrical and Information Engineering (DEI), Polytechnic University of Bari, Via Edoardo Orabona n.4, Bari 70126, Italy; Apulian Bioengineering s.r.l., Via delle Violette n.14, Modugno 70026, Italy.
| | - Jan Ulrich Becker
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|