1
|
Dar MS, Rosaiah P, Bhagyalakshmi J, Ahirwar S, Khan A, Tamizhselvi R, Reddy VRM, Palaniappan A, Sahu NK. Graphene quantum dots as nanotherapeutic agents for triple-negative breast cancer: Insights from 3D tumor models. Coord Chem Rev 2025; 523:216247. [DOI: 10.1016/j.ccr.2024.216247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Kwon H, Oh SH, Kim MG, Kim Y, Jung G, Lee HJ, Kim SY, Bae HM. Enhancing Breast Cancer Detection through Advanced AI-Driven Ultrasound Technology: A Comprehensive Evaluation of Vis-BUS. Diagnostics (Basel) 2024; 14:1867. [PMID: 39272652 PMCID: PMC11394308 DOI: 10.3390/diagnostics14171867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
This study aims to enhance breast cancer detection accuracy through an AI-driven ultrasound tool, Vis-BUS, developed by Barreleye Inc., Seoul, South Korea. Vis-BUS incorporates Lesion Detection AI (LD-AI) and Lesion Analysis AI (LA-AI), along with a Cancer Probability Score (CPS), to differentiate between benign and malignant breast lesions. A retrospective analysis was conducted on 258 breast ultrasound examinations to evaluate Vis-BUS's performance. The primary methods included the application of LD-AI and LA-AI to b-mode ultrasound images and the generation of CPS for each lesion. Diagnostic accuracy was assessed using metrics such as the Area Under the Receiver Operating Characteristic curve (AUROC) and the Area Under the Precision-Recall curve (AUPRC). The study found that Vis-BUS achieved high diagnostic accuracy, with an AUROC of 0.964 and an AUPRC of 0.967, indicating its effectiveness in distinguishing between benign and malignant lesions. Logistic regression analysis identified that 'Fatty' lesion density had an extremely high odds ratio (OR) of 27.7781, suggesting potential convergence issues. The 'Unknown' density category had an OR of 0.3185, indicating a lower likelihood of correct classification. Medium and large lesion sizes were associated with lower likelihoods of correct classification, with ORs of 0.7891 and 0.8014, respectively. The presence of microcalcifications showed an OR of 1.360. Among Breast Imaging-Reporting and Data System categories, category C5 had a significantly higher OR of 10.173, reflecting a higher likelihood of correct classification. Vis-BUS significantly improves diagnostic precision and supports clinical decision-making in breast cancer screening. However, further refinement is needed in areas like lesion density characterization and calcification detection to optimize its performance.
Collapse
Affiliation(s)
- Hyuksool Kwon
- Laboratory of Quantitative Ultrasound Imaging, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
- Imaging Division, Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
- Barreleye Inc., 312, Teheran-ro, Gangnam-gu, Seoul 06221, Republic of Korea
| | - Seok Hwan Oh
- Laboratory of Quantitative Ultrasound Imaging, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
- Barreleye Inc., 312, Teheran-ro, Gangnam-gu, Seoul 06221, Republic of Korea
- Electrical Engineering Department, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Myeong-Gee Kim
- Laboratory of Quantitative Ultrasound Imaging, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
- Barreleye Inc., 312, Teheran-ro, Gangnam-gu, Seoul 06221, Republic of Korea
- Electrical Engineering Department, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Youngmin Kim
- Electrical Engineering Department, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Guil Jung
- Electrical Engineering Department, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyeon-Jik Lee
- Electrical Engineering Department, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sang-Yun Kim
- Electrical Engineering Department, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyeon-Min Bae
- Barreleye Inc., 312, Teheran-ro, Gangnam-gu, Seoul 06221, Republic of Korea
- Electrical Engineering Department, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Buzatto IPC, Recife SA, Miguel L, Bonini RM, Onari N, Faim ALPA, Silvestre L, Carlotti DP, Fröhlich A, Tiezzi DG. Machine learning can reliably predict malignancy of breast lesions based on clinical and ultrasonographic features. Breast Cancer Res Treat 2024:10.1007/s10549-024-07429-0. [PMID: 39002069 DOI: 10.1007/s10549-024-07429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
PURPOSE To establish a reliable machine learning model to predict malignancy in breast lesions identified by ultrasound (US) and optimize the negative predictive value to minimize unnecessary biopsies. METHODS We included clinical and ultrasonographic attributes from 1526 breast lesions classified as BI-RADS 3, 4a, 4b, 4c, 5, and 6 that underwent US-guided breast biopsy in four institutions. We selected the most informative attributes to train nine machine learning models, ensemble models and models with tuned threshold to make inferences about the diagnosis of BI-RADS 4a and 4b lesions (validation dataset). We tested the performance of the final model with 403 new suspicious lesions. RESULTS The most informative attributes were shape, margin, orientation and size of the lesions, the resistance index of the internal vessel, the age of the patient and the presence of a palpable lump. The highest mean negative predictive value (NPV) was achieved with the K-Nearest Neighbors algorithm (97.9%). Making ensembles did not improve the performance. Tuning the threshold did improve the performance of the models and we chose the algorithm XGBoost with the tuned threshold as the final one. The tested performance of the final model was: NPV 98.1%, false negative 1.9%, positive predictive value 77.1%, false positive 22.9%. Applying this final model, we would have missed 2 of the 231 malignant lesions of the test dataset (0.8%). CONCLUSION Machine learning can help physicians predict malignancy in suspicious breast lesions identified by the US. Our final model would be able to avoid 60.4% of the biopsies in benign lesions missing less than 1% of the cancer cases.
Collapse
Affiliation(s)
- I P C Buzatto
- Department of Obstetrics and Gynecology - Breast Disease Division, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - S A Recife
- Department of Gynecology & Obstetrics, Women's Health Reference Center of Ribeirão Preto (MATER), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - L Miguel
- Department of Gynecology & Obstetrics, Women's Health Reference Center of Ribeirão Preto (MATER), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - R M Bonini
- Department of Radiology, Hospital de Amor de Campo Grande, Campo Grande, Mato Grosso Do Sul, Brazil
| | - N Onari
- Department of Radiology, Hospital de Amor de Barretos, Barretos, Brazil
| | - A L P A Faim
- Department of Radiology, Hospital de Amor de Barretos, Barretos, Brazil
| | - L Silvestre
- Department of Obstetrics and Gynecology - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - D P Carlotti
- Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
| | - A Fröhlich
- Department of Mathematics, Federal University of Santa Catarina, Florianópolis, Brazil
| | - D G Tiezzi
- Department of Obstetrics and Gynecology - Breast Disease Division and Laboratory for Translational Data Science, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3.900, Monte Alegre, Ribeirão Preto, Ribeirão Preto, Brazil.
- Advanced Research Center in Medicine, Union of the Colleges of the Great Lakes (UNILAGO), São José Do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
4
|
Bhalla D, Rangarajan K, Chandra T, Banerjee S, Arora C. Reproducibility and Explainability of Deep Learning in Mammography: A Systematic Review of Literature. Indian J Radiol Imaging 2024; 34:469-487. [PMID: 38912238 PMCID: PMC11188703 DOI: 10.1055/s-0043-1775737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
Background Although abundant literature is currently available on the use of deep learning for breast cancer detection in mammography, the quality of such literature is widely variable. Purpose To evaluate published literature on breast cancer detection in mammography for reproducibility and to ascertain best practices for model design. Methods The PubMed and Scopus databases were searched to identify records that described the use of deep learning to detect lesions or classify images into cancer or noncancer. A modification of Quality Assessment of Diagnostic Accuracy Studies (mQUADAS-2) tool was developed for this review and was applied to the included studies. Results of reported studies (area under curve [AUC] of receiver operator curve [ROC] curve, sensitivity, specificity) were recorded. Results A total of 12,123 records were screened, of which 107 fit the inclusion criteria. Training and test datasets, key idea behind model architecture, and results were recorded for these studies. Based on mQUADAS-2 assessment, 103 studies had high risk of bias due to nonrepresentative patient selection. Four studies were of adequate quality, of which three trained their own model, and one used a commercial network. Ensemble models were used in two of these. Common strategies used for model training included patch classifiers, image classification networks (ResNet in 67%), and object detection networks (RetinaNet in 67%). The highest reported AUC was 0.927 ± 0.008 on a screening dataset, while it reached 0.945 (0.919-0.968) on an enriched subset. Higher values of AUC (0.955) and specificity (98.5%) were reached when combined radiologist and Artificial Intelligence readings were used than either of them alone. None of the studies provided explainability beyond localization accuracy. None of the studies have studied interaction between AI and radiologist in a real world setting. Conclusion While deep learning holds much promise in mammography interpretation, evaluation in a reproducible clinical setting and explainable networks are the need of the hour.
Collapse
Affiliation(s)
- Deeksha Bhalla
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - Krithika Rangarajan
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - Tany Chandra
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - Subhashis Banerjee
- Department of Computer Science and Engineering, Indian Institute of Technology, New Delhi, India
| | - Chetan Arora
- Department of Computer Science and Engineering, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
5
|
Pressman SM, Borna S, Gomez-Cabello CA, Haider SA, Haider CR, Forte AJ. Clinical and Surgical Applications of Large Language Models: A Systematic Review. J Clin Med 2024; 13:3041. [PMID: 38892752 PMCID: PMC11172607 DOI: 10.3390/jcm13113041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
Background: Large language models (LLMs) represent a recent advancement in artificial intelligence with medical applications across various healthcare domains. The objective of this review is to highlight how LLMs can be utilized by clinicians and surgeons in their everyday practice. Methods: A systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Six databases were searched to identify relevant articles. Eligibility criteria emphasized articles focused primarily on clinical and surgical applications of LLMs. Results: The literature search yielded 333 results, with 34 meeting eligibility criteria. All articles were from 2023. There were 14 original research articles, four letters, one interview, and 15 review articles. These articles covered a wide variety of medical specialties, including various surgical subspecialties. Conclusions: LLMs have the potential to enhance healthcare delivery. In clinical settings, LLMs can assist in diagnosis, treatment guidance, patient triage, physician knowledge augmentation, and administrative tasks. In surgical settings, LLMs can assist surgeons with documentation, surgical planning, and intraoperative guidance. However, addressing their limitations and concerns, particularly those related to accuracy and biases, is crucial. LLMs should be viewed as tools to complement, not replace, the expertise of healthcare professionals.
Collapse
Affiliation(s)
| | - Sahar Borna
- Division of Plastic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Syed Ali Haider
- Division of Plastic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Clifton R. Haider
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Antonio Jorge Forte
- Division of Plastic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA
- Center for Digital Health, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Ma S, Li Y, Yin J, Niu Q, An Z, Du L, Li F, Gu J. Prospective study of AI-assisted prediction of breast malignancies in physical health examinations: role of off-the-shelf AI software and comparison to radiologist performance. Front Oncol 2024; 14:1374278. [PMID: 38756651 PMCID: PMC11096442 DOI: 10.3389/fonc.2024.1374278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Objective In physical health examinations, breast sonography is a commonly used imaging method, but it can lead to repeated exams and unnecessary biopsy due to discrepancies among radiologists and health centers. This study explores the role of off-the-shelf artificial intelligence (AI) software in assisting radiologists to classify incidentally found breast masses in two health centers. Methods Female patients undergoing breast ultrasound examinations with incidentally discovered breast masses were categorized according to the 5th edition of the Breast Imaging Reporting and Data System (BI-RADS), with categories 3 to 5 included in this study. The examinations were conducted at two municipal health centers from May 2021 to May 2023.The final pathological results from surgical resection or biopsy served as the gold standard for comparison. Ultrasonographic images were obtained in longitudinal and transverse sections, and two junior radiologists and one senior radiologist independently assessed the images without knowing the pathological findings. The BI-RADS classification was adjusted following AI assistance, and diagnostic performance was compared using receiver operating characteristic curves. Results A total of 196 patients with 202 breast masses were included in the study, with pathological results confirming 107 benign and 95 malignant masses. The receiver operating characteristic curve showed that experienced breast radiologists had higher diagnostic performance in BI-RADS classification than junior radiologists, similar to AI classification (AUC = 0.936, 0.806, 0.896, and 0.950, p < 0.05). The AI software improved the accuracy, sensitivity, and negative predictive value of the adjusted BI-RADS classification for the junior radiologists' group (p< 0.05), while no difference was observed in the senior radiologist group. Furthermore, AI increased the negative predictive value for BI-RADS 4a masses and the positive predictive value for 4b masses among radiologists (p < 0.05). AI enhances the sensitivity of invasive breast cancer detection more effectively than ductal carcinoma in situ and rare subtypes of breast cancer. Conclusions The AI software enhances diagnostic efficiency for breast masses, reducing the performance gap between junior and senior radiologists, particularly for BI-RADS 4a and 4b masses. This improvement reduces unnecessary repeat examinations and biopsies, optimizing medical resource utilization and enhancing overall diagnostic effectiveness.
Collapse
Affiliation(s)
- Sai Ma
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanfang Li
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Yin
- Department of Ultrasound, Shanghai Fourth People’s Hospital, Shanghai, China
| | - Qinghua Niu
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zichen An
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lianfang Du
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Li
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiying Gu
- Department of Ultrasound, Shidong Hospital, Yangpu District, Shanghai, China
| |
Collapse
|
7
|
Sacca L, Lobaina D, Burgoa S, Lotharius K, Moothedan E, Gilmore N, Xie J, Mohler R, Scharf G, Knecht M, Kitsantas P. Promoting Artificial Intelligence for Global Breast Cancer Risk Prediction and Screening in Adult Women: A Scoping Review. J Clin Med 2024; 13:2525. [PMID: 38731054 PMCID: PMC11084581 DOI: 10.3390/jcm13092525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/01/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Background: Artificial intelligence (AI) algorithms can be applied in breast cancer risk prediction and prevention by using patient history, scans, imaging information, and analysis of specific genes for cancer classification to reduce overdiagnosis and overtreatment. This scoping review aimed to identify the barriers encountered in applying innovative AI techniques and models in developing breast cancer risk prediction scores and promoting screening behaviors among adult females. Findings may inform and guide future global recommendations for AI application in breast cancer prevention and care for female populations. Methods: The PRISMA-SCR (Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews) was used as a reference checklist throughout this study. The Arksey and O'Malley methodology was used as a framework to guide this review. The framework methodology consisted of five steps: (1) Identify research questions; (2) Search for relevant studies; (3) Selection of studies relevant to the research questions; (4) Chart the data; (5) Collate, summarize, and report the results. Results: In the field of breast cancer risk detection and prevention, the following AI techniques and models have been applied: Machine and Deep Learning Model (ML-DL model) (n = 1), Academic Algorithms (n = 2), Breast Cancer Surveillance Consortium (BCSC), Clinical 5-Year Risk Prediction Model (n = 2), deep-learning computer vision AI algorithms (n = 2), AI-based thermal imaging solution (Thermalytix) (n = 1), RealRisks (n = 2), Breast Cancer Risk NAVIgation (n = 1), MammoRisk (ML-Based Tool) (n = 1), Various MLModels (n = 1), and various machine/deep learning, decision aids, and commercial algorithms (n = 7). In the 11 included studies, a total of 39 barriers to AI applications in breast cancer risk prediction and screening efforts were identified. The most common barriers in the application of innovative AI tools for breast cancer prediction and improved screening rates included lack of external validity and limited generalizability (n = 6), as AI was used in studies with either a small sample size or datasets with missing data. Many studies (n = 5) also encountered selection bias due to exclusion of certain populations based on characteristics such as race/ethnicity, family history, or past medical history. Several recommendations for future research should be considered. AI models need to include a broader spectrum and more complete predictive variables for risk assessment. Investigating long-term outcomes with improved follow-up periods is critical to assess the impacts of AI on clinical decisions beyond just the immediate outcomes. Utilizing AI to improve communication strategies at both a local and organizational level can assist in informed decision-making and compliance, especially in populations with limited literacy levels. Conclusions: The use of AI in patient education and as an adjunctive tool for providers is still early in its incorporation, and future research should explore the implementation of AI-driven resources to enhance understanding and decision-making regarding breast cancer screening, especially in vulnerable populations with limited literacy.
Collapse
Affiliation(s)
- Lea Sacca
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA; (D.L.); (S.B.); (K.L.); (E.M.); (N.G.); (J.X.); (R.M.); (G.S.); (M.K.); (P.K.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Al Muhaisen S, Safi O, Ulayan A, Aljawamis S, Fakhoury M, Baydoun H, Abuquteish D. Artificial Intelligence-Powered Mammography: Navigating the Landscape of Deep Learning for Breast Cancer Detection. Cureus 2024; 16:e56945. [PMID: 38665752 PMCID: PMC11044525 DOI: 10.7759/cureus.56945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Worldwide, breast cancer (BC) is one of the most commonly diagnosed malignancies in women. Early detection is key to improving survival rates and health outcomes. This literature review focuses on how artificial intelligence (AI), especially deep learning (DL), can enhance the ability of mammography, a key tool in BC detection, to yield more accurate results. Artificial intelligence has shown promise in reducing diagnostic errors and increasing early cancer detection chances. Nevertheless, significant challenges exist, including the requirement for large amounts of high-quality data and concerns over data privacy. Despite these hurdles, AI and DL are advancing the field of radiology, offering better ways to diagnose, detect, and treat diseases. The U.S. Food and Drug Administration (FDA) has approved several AI diagnostic tools. Yet, the full potential of these technologies, especially for more advanced screening methods like digital breast tomosynthesis (DBT), depends on further clinical studies and the development of larger databases. In summary, this review highlights the exciting potential of AI in BC screening. It calls for more research and validation to fully employ the power of AI in clinical practice, ensuring that these technologies can help save lives by improving diagnosis accuracy and efficiency.
Collapse
Affiliation(s)
| | - Omar Safi
- Medicine, Faculty of Medicine, The Hashemite University, Zarqa, JOR
| | - Ahmad Ulayan
- Medicine, Faculty of Medicine, The Hashemite University, Zarqa, JOR
| | - Sara Aljawamis
- Medicine, Faculty of Medicine, The Hashemite University, Zarqa, JOR
| | - Maryam Fakhoury
- Medicine, Faculty of Medicine, The Hashemite University, Zarqa, JOR
| | - Haneen Baydoun
- Diagnostic Radiology, King Hussein Cancer Center, Amman, JOR
| | - Dua Abuquteish
- Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, JOR
- Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman, JOR
| |
Collapse
|
9
|
Dishner KA, McRae-Posani B, Bhowmik A, Jochelson MS, Holodny A, Pinker K, Eskreis-Winkler S, Stember JN. A Survey of Publicly Available MRI Datasets for Potential Use in Artificial Intelligence Research. J Magn Reson Imaging 2024; 59:450-480. [PMID: 37888298 PMCID: PMC10873125 DOI: 10.1002/jmri.29101] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Artificial intelligence (AI) has the potential to bring transformative improvements to the field of radiology; yet, there are barriers to widespread clinical adoption. One of the most important barriers has been access to large, well-annotated, widely representative medical image datasets, which can be used to accurately train AI programs. Creating such datasets requires time and expertise and runs into constraints around data security and interoperability, patient privacy, and appropriate data use. Recognizing these challenges, several institutions have started curating and providing publicly available, high-quality datasets that can be accessed by researchers to advance AI models. The purpose of this work was to review the publicly available MRI datasets that can be used for AI research in radiology. Despite being an emerging field, a simple internet search for open MRI datasets presents an overwhelming number of results. Therefore, we decided to create a survey of the major publicly accessible MRI datasets in different subfields of radiology (brain, body, and musculoskeletal), and list the most important features of value to the AI researcher. To complete this review, we searched for publicly available MRI datasets and assessed them based on several parameters (number of subjects, demographics, area of interest, technical features, and annotations). We reviewed 110 datasets across sub-fields with 1,686,245 subjects in 12 different areas of interest ranging from spine to cardiac. This review is meant to serve as a reference for researchers to help spur advancements in the field of AI for radiology. LEVEL OF EVIDENCE: Level 4 TECHNICAL EFFICACY: Stage 6.
Collapse
Affiliation(s)
- Katharine A. Dishner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- SUNY Downstate College of Medicine, Brooklyn, NY 11203
| | - Bala McRae-Posani
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Weill Cornell Medicine, New York, NY 10065
| | - Arka Bhowmik
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Maxine S. Jochelson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Andrei Holodny
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065
- Department of Neuroscience, Weill Cornell Graduate School of the Medical Sciences, New York, NY 10065
| | - Katja Pinker
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | | | - Joseph N. Stember
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065
| |
Collapse
|
10
|
Lian W, Lian K, Lin T. Breast Imaging Reporting and Data System evaluation of breast lesions improved with virtual touch tissue imaging average grayscale values. Technol Health Care 2024; 32:925-936. [PMID: 37545278 DOI: 10.3233/thc-230306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUND Early breast cancer diagnosis is of great clinical importance for selecting treatment options, improving prognosis, and enhancing the quality of patients' survival. OBJECTIVE We investigated the value of virtual touch tissue imaging average grayscale values (VAGV) helper Breast Imaging Reporting and Data System (BI-RADS) in diagnosing breast malignancy. METHODS We retrospectively analyzed 141 breast tumors in 134 patients. All breast lesions were diagnosed pathologically by biopsy or surgical excision. All patients first underwent conventional ultrasound (US) followed by virtual touch tissue imaging (VTI). The measurement of the VAGV of the lesion was performed by Image J software. BI-RADS classification was performed for each lesion according to the US. We performed a two-by-two comparison of the diagnostic values of VAGV, BI-RADS, and BI-RADS+VAGV. RESULTS VAGV was lower in malignant tumors than in benign ones (35.82 ± 13.39 versus 73.58 ± 42.69, P< 0.001). The area under the receiver operating characteristic curve (AUC) value, sensitivity, and specificity of VAGV was 0.834, 84.09%, and 69.07%, respectively. Among BI-RADS, VAGV, and BI-RADS+VAGV, BI-RADS+VAGV had the highest AUC (0.926 versus 0.882, P= 0.0066; 0.926 versus 0.834, P= 0.0012). There was perfect agreement between the two radiologists using VAGV (ICC= 0.9796) and substantial agreement using BI-RADS (Kappa= 0.725). CONCLUSION Our study shows that VAGV can accurately diagnose breast cancer. VAGV effectively improves the diagnostic performance of BI-RADS.
Collapse
|
11
|
Khosravi M, Zare Z, Mojtabaeian SM, Izadi R. Artificial Intelligence and Decision-Making in Healthcare: A Thematic Analysis of a Systematic Review of Reviews. Health Serv Res Manag Epidemiol 2024; 11:23333928241234863. [PMID: 38449840 PMCID: PMC10916499 DOI: 10.1177/23333928241234863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction The use of artificial intelligence (AI), which can emulate human intelligence and enhance clinical results, has grown in healthcare decision-making due to the digitalization effects and the COVID-19 pandemic. The purpose of this study was to determine the scope of applications of AI tools in the decision-making process in healthcare service delivery networks. Materials and methods This study used a qualitative method to conduct a systematic review of the existing reviews. Review articles published between 2000 and 2024 in English-language were searched in PubMed, Scopus, ProQuest, and Cochrane databases. The CASP (Critical Appraisal Skills Programme) Checklist for Systematic Reviews was used to evaluate the quality of the articles. Based on the eligibility criteria, the final articles were selected and the data extraction was done independently by 2 authors. Finally, the thematic analysis approach was used to analyze the data extracted from the selected articles. Results Of the 14 219 identified records, 18 review articles were eligible and included in the analysis, which covered the findings of 669 other articles. The quality assessment score of all reviewed articles was high. And, the thematic analysis of the data identified 3 main themes including clinical decision-making, organizational decision-making, and shared decision-making; which originated from 8 subthemes. Conclusions This study revealed that AI tools have been applied in various aspects of healthcare decision-making. The use of AI can improve the quality, efficiency, and effectiveness of healthcare services by providing accurate, timely, and personalized information to support decision-making. Further research is needed to explore the best practices and standards for implementing AI in healthcare decision-making.
Collapse
Affiliation(s)
- Mohsen Khosravi
- Department of Health Care Management, School of Management and Information Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zare
- Department of Health Care Management, School of Management and Information Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Morteza Mojtabaeian
- Department of Healthcare Economics, School of Management and Medical Informatics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reyhane Izadi
- Department of Health Care Management, School of Management and Information Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Lukac S, Dayan D, Fink V, Leinert E, Hartkopf A, Veselinovic K, Janni W, Rack B, Pfister K, Heitmeir B, Ebner F. Evaluating ChatGPT as an adjunct for the multidisciplinary tumor board decision-making in primary breast cancer cases. Arch Gynecol Obstet 2023; 308:1831-1844. [PMID: 37458761 PMCID: PMC10579162 DOI: 10.1007/s00404-023-07130-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/27/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND As the available information about breast cancer is growing every day, the decision-making process for the therapy is getting more complex. ChatGPT as a transformer-based language model possesses the ability to write scientific articles and pass medical exams. But is it able to support the multidisciplinary tumor board (MDT) in the planning of the therapy of patients with breast cancer? MATERIAL AND METHODS We performed a pilot study on 10 consecutive cases of breast cancer patients discussed in MDT at our department in January 2023. Included were patients with a primary diagnosis of early breast cancer. The recommendation of MDT was compared with the recommendation of the ChatGPT for particular patients and the clinical score of the agreement was calculated. RESULTS Results showed that ChatGPT provided mostly general answers regarding chemotherapy, breast surgery, radiation therapy, chemotherapy, and antibody therapy. It was able to identify risk factors for hereditary breast cancer and point out the elderly patient indicated for chemotherapy to evaluate the cost/benefit effect. ChatGPT wrongly identified the patient with Her2 1 + and 2 + (FISH negative) as in need of therapy with an antibody and called endocrine therapy "hormonal treatment". CONCLUSIONS Support of artificial intelligence by finding individualized and personalized therapy for our patients in the time of rapidly expanding amount of information is looking for the ways in the clinical routine. ChatGPT has the potential to find its spot in clinical medicine, but the current version is not able to provide specific recommendations for the therapy of patients with primary breast cancer.
Collapse
Affiliation(s)
- Stefan Lukac
- Department of Gynecology and Obstetrics, University Hospital Ulm, Prittwitzstr. 43, 89075, Ulm, Germany.
| | - Davut Dayan
- Department of Gynecology and Obstetrics, University Hospital Ulm, Prittwitzstr. 43, 89075, Ulm, Germany
| | - Visnja Fink
- Department of Gynecology and Obstetrics, University Hospital Ulm, Prittwitzstr. 43, 89075, Ulm, Germany
| | - Elena Leinert
- Department of Gynecology and Obstetrics, University Hospital Ulm, Prittwitzstr. 43, 89075, Ulm, Germany
| | - Andreas Hartkopf
- Department of Gynecology and Obstetrics, University Hospital Ulm, Prittwitzstr. 43, 89075, Ulm, Germany
| | - Kristina Veselinovic
- Department of Gynecology and Obstetrics, University Hospital Ulm, Prittwitzstr. 43, 89075, Ulm, Germany
| | - Wolfgang Janni
- Department of Gynecology and Obstetrics, University Hospital Ulm, Prittwitzstr. 43, 89075, Ulm, Germany
| | - Brigitte Rack
- Department of Gynecology and Obstetrics, University Hospital Ulm, Prittwitzstr. 43, 89075, Ulm, Germany
| | - Kerstin Pfister
- Department of Gynecology and Obstetrics, University Hospital Ulm, Prittwitzstr. 43, 89075, Ulm, Germany
| | - Benedikt Heitmeir
- Department of Gynecology and Obstetrics, University Hospital Ulm, Prittwitzstr. 43, 89075, Ulm, Germany
| | - Florian Ebner
- Department of Gynecology and Obstetrics, University Hospital Ulm, Prittwitzstr. 43, 89075, Ulm, Germany
- Gynäkologische Gemeinschaftspraxis Freising & Moosburg, Munich, Germany
| |
Collapse
|
13
|
Dank G, Buber T, Rice A, Kraicer N, Hanael E, Shasha T, Aviram G, Yehudayoff A, Kent MS. Training and validation of a novel non-invasive imaging system for ruling out malignancy in canine subcutaneous and cutaneous masses using machine learning in 664 masses. Front Vet Sci 2023; 10:1164438. [PMID: 37841459 PMCID: PMC10570610 DOI: 10.3389/fvets.2023.1164438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 09/05/2023] [Indexed: 10/17/2023] Open
Abstract
Objective To train and validate the use of a novel artificial intelligence-based thermal imaging system as a screening tool to rule out malignancy in cutaneous and subcutaneous masses in dogs. Animals Training study: 147 client-owned dogs with 233 masses. Validation Study: 299 client-owned dogs with 525 masses. Cytology was non-diagnostic in 94 masses, resulting in 431 masses from 248 dogs with diagnostic samples. Procedures The prospective studies were conducted between June 2020 and July 2022. During the scan, each mass and its adjacent healthy tissue was heated by a high-power Light-Emitting Diode. The tissue temperature was recorded by the device and consequently analyzed using a supervised machine learning algorithm to determine whether the mass required further investigation. The first study was performed to collect data to train the algorithm. The second study validated the algorithm, as the real-time device predictions were compared to the cytology and/or biopsy results. Results The results for the validation study were that the device correctly classified 45 out of 53 malignant masses and 253 out of 378 benign masses (sensitivity = 85% and specificity = 67%). The negative predictive value of the system (i.e., percent of benign masses identified as benign) was 97%. Clinical relevance The results demonstrate that this novel system could be used as a decision-support tool at the point of care, enabling clinicians to differentiate between benign lesions and those requiring further diagnostics.
Collapse
Affiliation(s)
| | - Tali Buber
- HT BioImaging Ltd., Hod Hasharon, Israel
| | - Anna Rice
- HT BioImaging Ltd., Hod Hasharon, Israel
| | | | | | | | - Gal Aviram
- Department Biomedical Engineering, Tel Aviv University, Tel Aviv-Yafo, Israel
| | | | - Michael S. Kent
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
14
|
Scaranelo AM. Standalone AI in Breast Cancer Screening: Where We Are and What Is to Be Achieved. Radiology 2023; 307:e230935. [PMID: 37219442 DOI: 10.1148/radiol.230935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Affiliation(s)
- Anabel M Scaranelo
- From the Department of Medical Imaging, Faculty of Medicine, University of Toronto, 263 McCaul St, 4th Floor, Toronto, ON, Canada M5T 1W7
| |
Collapse
|