1
|
Tangon N, Kumfu S, Chattipakorn N, Chattipakorn SC. Links between oropharyngeal microbiota and IgA nephropathy: A paradigm shift from isolated microbe to microbiome. Microbiol Res 2024; 292:128005. [PMID: 39675141 DOI: 10.1016/j.micres.2024.128005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
Immunoglobulin A nephropathy (IgAN) is the most prevalent form of primary glomerulonephritis globally, yet its pathogenesis remains incompletely understood. While much research has focused on the gut microbiome in the development of the disease, emerging evidence suggests that the oropharyngeal microbiota may also be a potential contributor. Studies have revealed significant alterations in oropharyngeal microbial diversity and specific bacterial taxa in IgAN patients, correlating with disease severity and progression. This review aims to comprehensively summarize and discuss the key findings from in vitro, in vivo, and clinical studies into the oropharyngeal bacteria and microbiome alterations in IgAN. Clinical studies have identified associations between certain oropharyngeal bacteria, particularly Cnm+Streptococcus mutans, Campylobacter rectus, and Porphyromonas gingivalis with IgAN patients and severe clinical outcomes with. In vitro and in vivo studies further establish a causal relationship between IgAN and oropharyngeal bacteria such as Streptococcus and Haemophilus. Microbiome analyses demonstrate dysbiotic patterns in IgAN patients and identify new potential bacterial genera that have yet to be explored experimentally but may potentially contribute to the disease's pathogenesis. Additionally, the use of these bacterial genera as diagnostic and prognostic biomarkers of IgAN has achieved promising performance. Overall, the evidence highlights the strong connection between oropharyngeal bacteria and IgAN through both causal and non-causal associations. Further investigation into these newly identified bacterial genera and integration of multi-omics data are necessary to uncover mechanisms, validate their role in IgAN, and potentially develop novel diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Narongsak Tangon
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sirinart Kumfu
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
2
|
Liu H, Dai L, Liu J, Duan K, Yi F, Li Z. Establishment and validation of diagnostic model in immunoglobulin A nephropathy based on weighted gene co-expression network analysis. Medicine (Baltimore) 2024; 103:e39930. [PMID: 39612439 DOI: 10.1097/md.0000000000039930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2024] Open
Abstract
Bioinformatics analysis helps to understand the underlying mechanisms and adjust diagnostic and treatment strategies for immunoglobulin A nephropathy (IgAN) by screening gene expression datasets. We explored the biological function of IgAN, and established and validated a diagnostic model for IgAN using weighted gene co-expression network analysis. Using the GSE93798 and GSE37460 datasets, we performed differential expression analysis, Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, constructed a protein-protein network, and identified hub genes. A diagnostic model was built using a receiver operating characteristic curve, calibration plot, and decision curve analysis. Two Gene Expression Omnibus (GEO) datasets were integrated to screen 38 differentially expressed genes between patients with IgAN and normal kidney donors in glomerular samples. KEGG enrichment analysis showed that the differentially expressed genes were mainly enriched in the IL-17 and relaxin signaling pathways. We constructed a protein-protein interaction (PPI) network of differentially expressed genes using the STRING database and cross-compared it with the results of weighted gene correlation network analysis to screen out the top 10 key genes: FOS, EGR2, FOSB, NR4A1, BR4A3, FOSL1, NR4A2, ALB, CD53, C3AR1.We also found that the immune infiltration level was remarkably increased in IgAN tissues. We established a 5-gene panel diagnostic model (ACTA2, ALB, AFM, ALDH1L1, and ALDH6A1). The combined diagnostic ability was high, with the area under the curve (AUC) was 0.964. Based on these 5 genes, we also developed a risk-scoring evaluation system for individuals. The calibration plot indicated that the nomogram-predicted probability of nonadherence was highly correlated with actual diagnosed nonadherence, and the decision curve analysis indicated that patients had a relatively good net benefit. The model and gene expression were also validated using an external dataset. Our study provides directions for exploring the potential molecular mechanisms of IgAN as well as diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Haibo Liu
- Department of Emergency, Yueyang Central Hospital, Yueyang, Hunan Province, China
| | - Lingling Dai
- Department of Gynaecology, Shenzhen Nanshan People's Hospital, Shenzhen, Guangdong Province, China
| | - Jie Liu
- Department of Emergency, Shenzhen United Family Hospital, Shenzhen, Guangdong Province, China
| | - Kai Duan
- Department of Emergency, Yueyang Central Hospital, Yueyang, Hunan Province, China
| | - Feng Yi
- Department of Emergency, Yueyang Central Hospital, Yueyang, Hunan Province, China
| | - Zhuo Li
- Department of Emergency, Shenzhen Nanshan People's Hospital, Shenzhen, Guangdong Province, China
| |
Collapse
|
3
|
Al-Karawi AS, Kadhim AS. Correlation of autoimmune response and immune system components in the progression of IgA nephropathy: A comparative study. Hum Immunol 2024; 85:111181. [PMID: 39566436 DOI: 10.1016/j.humimm.2024.111181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/27/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Immunoglobin-IgA nephropathy (IgAN) stands as the most prevalent primary glomerulonephritis globally. Recently, several studies have mentioned the essential role of the autoimmune response as a mechanism causing Berger's disease, but it is not clear. AIM The aims of the study was to assess the correlation between autoimmune competences and explain the roles of certain immune contents in the progression of disease. MATERIAL AND METHOD One hundred and fifty patients participated in the study, including 75 patients with Berger's disease and 75 healthy controls. The chemiluminescence immunoassay technique was employing to assess the level of autoantibodies, while nephelometry was utilizing to quantify the concentration of immunoglobin-related disease and complement proteins (C1q and C4). Simpler, blood smears were accustomed to diagnosing fragments of RBCs (schistocytes), and simple flow cytometry was used to enumerate red blood cells (RBCs) and platelets. RESULTS The current study revealed a significantly increased in the schistocytes and lower counts of RBCs in the patients compared to the control. Also, the results showed that the level of ANA, ANCA and dsDNA was highly significant (p < 0.001) in the patients (67.1 ± 2.5 ng/ml, 55.9 ± 12.0 ng/ml, 65.0 ± 2.0 ng/ml respectively) than the control (5.5 ± 0.30 ng/ml, 15.4 ± 1.0 ng/ml, 12.5 ± 0.22 ng/ml, respectively). Furthermore, IgM level was significantly no different (p = 0.755) in a patient (2.8 ± 0.19 ng/ml) compared to the control (2.5 ± 0.26 ng/ml). While the level of IgA and IgG was highly significant (p < 0.001) in the patient (10.3 ± 0.99 ng/ml and 11.6 ± 12 ng/ml respectively) compared to the control (4.2 ± 0.69 ng/ml and 2.8 ± 0.99 ng/ml respectively). Additionally, levels of C4 and C1q were a significantly increase in serum patients than the control group. However, there is a direct correlation between autoimmune antibodies and complement. CONCLUSION There was a strong correlation between immune system components and blood factors, which was identified as a contributing factor in the development of Berger's disease.
Collapse
Affiliation(s)
| | - Ali Saad Kadhim
- Branch of Biology, Department of Science, College of Basic Education, Wasit University, Wasit, Iraq.
| |
Collapse
|
4
|
Qing J, Li C, Zhi H, Zhang L, Wu J, Li Y. Exploring macrophage heterogeneity in IgA nephropathy: Mechanisms of renal impairment and current therapeutic targets. Int Immunopharmacol 2024; 140:112748. [PMID: 39106714 DOI: 10.1016/j.intimp.2024.112748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/11/2024] [Accepted: 07/21/2024] [Indexed: 08/09/2024]
Abstract
The lack of understanding of the mechanism of renal injury in IgA nephropathy (IgAN) hinders the development of personalized treatment plans and targeted therapies. Improved insight into the cause of renal dysfunction in IgAN is necessary to enhance the effectiveness of strategies for slowing the progression of the disease. This study examined single cell RNA sequencing (scRNA seq) and bulk-RNA seq data and found that the gene expression of renal intrinsic cells (RIC) was significantly changed in patients with renal impairment, with a primary focus on energy metabolism. We discovered a clear metabolic reprogramming of RIC during renal function impairment (RF) using the 'scMetabolism' package, which manifested as a weakening of oxidative phosphorylation, alterations in fatty acid metabolism, and changes in glycolysis. Cellular communication analysis revealed that communication between macrophages (Ma) and RIC became more active and impacted cell function through the ligand-receptor-transcription factor (L-R-TF) axis in patients with RF. Our studies showed a notable upsurge in the expression of gene CLU and the infiltration of CLU+ Ma in patients with RF. CLU is a multifunctional protein, extensively involved in processes such as cell apoptosis and immune responses. Data obtained from the Nephroseq V5 database and multiplex immunohistochemistry (mIHC) were used to validate the findings, which were found to be robustly correlated with estimated glomerular filtration rate (eGFR) of the IgAN patients, as demonstrated by linear regression (LR). This study provides new insights into the cellular and molecular changes that occur in IgAN during renal impairment, revealing that elevated expression of CLU and CLU+ Ma percolation are common features in patients with RF. These findings offer potential targets and strategies for personalized management and targeted therapy of IgAN.
Collapse
Affiliation(s)
- Jianbo Qing
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China; Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Changqun Li
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China; Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Huiwen Zhi
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
| | - Lijuan Zhang
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
| | - Junnan Wu
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Core Laboratory, Shanxi Provincial People's Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan 030001, China; Academy of Microbial Ecology, Shanxi Medical University, Taiyuan 030001, China; Department of Nephrology, Hejin Municipal People's Hospital, Yuncheng 043300, China.
| |
Collapse
|
5
|
Ren J, Ma K, Lu X, Peng H, Wang J, Nasser MI, Liu C. Occurrence and role of Tph cells in various renal diseases. Mol Med 2024; 30:174. [PMID: 39390361 PMCID: PMC11468416 DOI: 10.1186/s10020-024-00919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/31/2024] [Indexed: 10/12/2024] Open
Abstract
A new population of peripheral helper T (Tph) cells has been identified and contributed to various autoimmune diseases. Tph cells can secrete interleukin-21 (IL-21), interferon (IFN) and C-X-C motif chemokine ligand 13 (CXCL13) to moderate renal disease. Moreover, Tph cells can congregate in huge numbers and immerse within inflamed tissue. Compared to Tfh cells, Tph cells express high programmed cell death protein 1 (PD-1), major histocompatibility complex II (MHC-II), C-C chemokine receptor 2 (CCR2) and C-C chemokine receptor 5 (CCR5) but often lack expression of the chemokine receptor C-X-C chemokine receptor 5 (CXCR5). They display features distinct from other T cells, which are uniquely poised to promote responses and antibody production of B cells within pathologically inflamed non-lymphoid tissues and a key feature of Tph cells. In this review, we summarize recent findings on the role of Tph cells in chronic kidney disease, acute kidney injury, kidney transplantation and various renal diseases.
Collapse
Affiliation(s)
- Junyi Ren
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Xiangheng Lu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haoyu Peng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jia Wang
- General Practice Center, Sichuan Provincial People's Hospital, Sichuan Academy of Sciences, University of Electronic Science and Technology, Chengdu, 610072, China
| | - Moussa Ide Nasser
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510100, Guangdong, China.
| | - Chi Liu
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, China.
| |
Collapse
|
6
|
Elnaga AAA, Alsaied MA, Elettreby AM, Ramadan A, Abouzid M, Shetta R, Al-Ajlouni YA. Safety and efficacy of sparsentan versus irbesartan in focal segmental glomerulosclerosis and IgA nephropathy: a systematic review and meta-analysis of randomized controlled trials. BMC Nephrol 2024; 25:316. [PMID: 39333921 PMCID: PMC11429118 DOI: 10.1186/s12882-024-03713-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Sparsentan has shown positive effects on managing different subtypes of glomerulonephritis. The recent results of trials require a pooled analysis to validate these results. AIM We aim to assess the safety and efficacy of sparsentan versus irbesartan for patients with IgA nephropathy and focal glomerulosclerosis (FSGS). METHODS We conducted a systematic review and meta-analysis of randomized controlled trials retrieved by systematically searching PubMed, Web of Science, Scopus, and Cochrane through March 2024. We used Review Manager v.5.4 to pool dichotomous data using risk ratio (RR) and continuous data using mean difference (MD) with a 95% confidence interval (CI). RESULTS Three studies with a total of 884 patients were included. Sparsentan was superior to irbesartan in improving urine protein to creatinine ratio (UP/C) (ratio of percentage reduction 0.66, 95% CI [0.58 to 0.74], P < 0.001); as well as the proportion of patients achieved complete and partial remission of proteinuria (RR = 2.57, 95% CI [1.73 to 3.81], P < 0.001) and (RR = 1.63, 95% CI [1.4 to 1.91], P < 0.001) respectively. Regarding the effect on the glomerular filtration rate, the results estimate did not favor either sparsentan or irbesartan (MD = 1.98 ml/min per 1.73mm2, 95% CI [-1.05 to 5.01], P = 0.2). There were no significant differences in adverse events except for hypotension, which showed higher rates in the sparsentan group (RR = 2.02, 95% CI [1.3 to 3.16], P = 0.002). CONCLUSION Sparsentan is effective and has a good safety profile for treating FSGS and patients with IgA nephropathy. However, more well-designed RCTs against ARBs, ACE inhibitors, and steroids with larger sample sizes are needed to get conclusive evidence.
Collapse
Affiliation(s)
| | | | | | - Alaa Ramadan
- Faculty of Medicine, South Valley University, Qena, Egypt
| | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3 St, Poznan, 60-806, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznan, 60-812, Poland
| | - Raghda Shetta
- Department of Internal Medicine, UCF College of Medicine, HCA Florida Ocala, Ocala, USA
| | - Yazan A Al-Ajlouni
- Department of Physical Medicine and Rehabilitation, Montefiore Medical Center, Wakefield Campus, NY, Montefiore, USA.
| |
Collapse
|
7
|
Song H, Liang GQ, Yu MS, Shan Y, Shi J, Jiang CB, Ni DL, Sheng MX. Shen-yan-yi-hao oral solution ameliorates IgA nephropathy via intestinal IL-17/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118335. [PMID: 38754644 DOI: 10.1016/j.jep.2024.118335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis in the world, it is one of the most common causes of kidney disease and can lead to end-stage kidney disease, however, its pathogenesis is still complicated. The Shen-yan-yi-hao oral solution (SOLI) is an effective prescription for the clinical treatment of IgAN while its specific mechanism remains to be further elucidated. AIM OF THE STUDY This study investigates SOLI's effects on IgAN in rats, particularly on the intestinal mucosal barrier, and identifies potential therapeutic targets through network pharmacology and molecular docking, validated experimentally. MATERIALS AND METHODS Target genes for SOLI in IgAN were identified and analysed through molecular docking and KEGG pathway enrichment. An IgAN rat model examined SOLI's effect on renal biomarkers and cytokines involved in specific pathways, ileum mucosal lesions, and the intestinal immune system. The IL-17 pathway's role was studied in IEC-6 cells with SOLI in vitro. RESULT Rats developed increased proteinuria and kidney damage marked by IgA deposition and inflammation. SOLI treatment significantly ameliorated these symptoms, reduced galactose-deficient Ig A1 (Gd-IgA1), and decreased cytokines like IL-17, TNF-α, IL-6 and IL-1β etc. SOLI also normalized intestinal tight junction protein expression, ameliorated intestinal damage, and regulated intestinal immune response (focused on IL-17/NF-κB signal pathway). SOLI moderated the abnormally activated IL-17 pathway, which damages intestinal epithelial cells, suggesting IgAN treatment potential. CONCLUSION SOLI reduces proteinuria and enhances intestinal mucosal function in IgAN rats, kidney protection in the IgAN rat model may initiate from modulating the intestinal IL-17/NF-κB pathway and subsequent Gd-IgA1 accumulation.
Collapse
Affiliation(s)
- Huan Song
- Nephropathy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, China; Nephropathy Department, The Suzhou Affiliated Hospital of Nanjing University of Chinese Medicine, 18 Yangsu Road, Suzhou, 215000, China.
| | - Guo-Qiang Liang
- Nephropathy Department, The Suzhou Affiliated Hospital of Nanjing University of Chinese Medicine, 18 Yangsu Road, Suzhou, 215000, China; Suzhou Academy of Wumen Chinese Medicine, 18 Yangsu Road, Suzhou, 215000, China.
| | - Man-Shu Yu
- Nephropathy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, China.
| | - Yun Shan
- Nephropathy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, China.
| | - Jun Shi
- Nephropathy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, China.
| | - Chun-Bo Jiang
- Nephropathy Department, The Suzhou Affiliated Hospital of Nanjing University of Chinese Medicine, 18 Yangsu Road, Suzhou, 215000, China.
| | - Dao-Lei Ni
- Nephropathy Department, The Suzhou Affiliated Hospital of Nanjing University of Chinese Medicine, 18 Yangsu Road, Suzhou, 215000, China.
| | - Mei-Xiao Sheng
- Nephropathy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, China.
| |
Collapse
|
8
|
Chiu AW, Bredenkamp N. Sparsentan: A First-in-Class Dual Endothelin and Angiotensin II Receptor Antagonist. Ann Pharmacother 2024; 58:645-656. [PMID: 37706310 DOI: 10.1177/10600280231198925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
OBJECTIVE To provide an overview of the guidelines on the management of immunoglobulin A nephropathy (IgAN) and focal segmental glomerulosclerosis (FSGS), review the evidence for sparsentan, and discuss its place in therapy. DATA SOURCES A literature search was conducted using MEDLINE, EMBASE, and clinicaltrials.gov using the search terms "sparsentan" and "RE-021" up to the end of Jun 2023. STUDY SELECTION AND DATA EXTRACTION English studies were included if they evaluated the pharmacology, pharmacokinetics, efficacy, and safety of sparsentan in human subjects. Information from the Food and Drug Administration (FDA) and manufacturer's monograph were also extracted. DATA SYNTHESIS In comparison with irbesartan, sparsentan reduced urine protein-to-creatinine ratio (UPCR) in both IgAN (-49.8% vs -15.1% at interim 36 weeks) and FSGS (-44.8% vs -18.5% at 8 weeks). Hypotension and edema were the most common adverse events in the sparsentan groups. Hepatotoxicity appears to be comparable between sparsentan and irbesartan in short-term results. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE IN COMPARISON WITH EXISTING DRUGS Sparsentan provides a new option for patients with IgAN who are otherwise at high risk of progressive kidney disease. Continued FDA approval is dependent on long-term study results on renal function decline and safety. CONCLUSION Sparsentan reduces proteinuria in IgAN and FSGS, and has expedited approval by the FDA for IgAN in patients at risk of rapid disease progression, generally at urine protein-to-creatinine ratio (UPCR) ≥1.5 g/g. Interim results from PROTECT and results from DUET showed promise for improving proteinuria in IgAN and FSGS. Long-term renal function benefit and safety data are pending.
Collapse
Affiliation(s)
- Ada W Chiu
- Renal Program, Fraser Health Authority, Surrey, BC, Canada
| | | |
Collapse
|
9
|
Chen C, Zhang J, Yu T, Feng H, Liao J, Jia Y. LRG1 Contributes to the Pathogenesis of Multiple Kidney Diseases: A Comprehensive Review. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:237-248. [PMID: 38799248 PMCID: PMC11126829 DOI: 10.1159/000538443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/08/2024] [Indexed: 05/29/2024]
Abstract
Background The increasing prevalence of kidney diseases has become a significant public health issue, with a global prevalence exceeding 10%. In order to accurately identify biochemical changes and treatment outcomes associated with kidney diseases, novel methods targeting specific genes have been discovered. Among these genes, leucine-rich α-2 glycoprotein 1 (LRG1) has been identified to function as a multifunctional pathogenic signaling molecule in multiple diseases, including kidney diseases. This study aims to provide a comprehensive overview of the current evidence regarding the roles of LRG1 in different types of kidney diseases. Summary Based on a comprehensive review, it was found that LRG1 was upregulated in the urine, serum, or renal tissues of patients or experimental animal models with multiple kidney diseases, such as diabetic nephropathy, kidney injury, IgA nephropathy, chronic kidney diseases, clear cell renal cell carcinoma, end-stage renal disease, canine leishmaniosis-induced kidney disease, kidney fibrosis, and aristolochic acid nephropathy. Mechanistically, the role of LRG1 in kidney diseases is believed to be detrimental, potentially through its regulation of various genes and signaling cascades, i.e., fibronectin 1, GPR56, vascular endothelial growth factor (VEGF), VEGFR-2, death receptor 5, GDF15, HIF-1α, SPP1, activin receptor-like kinase 1-Smad1/5/8, NLRP3-IL-1b, and transforming growth factor β pathway. Key Messages Further research is needed to fully comprehend the molecular mechanisms by which LRG1 contributes to the pathogenesis and pathophysiology of kidney diseases. It is anticipated that targeted treatments focusing on LRG1 will be utilized in clinical trials and implemented in clinical practice in the future.
Collapse
Affiliation(s)
- Chunyan Chen
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Jingwei Zhang
- Department of Urology, Guangzhou First People’s Hospital, Guangzhou, China
| | - Tao Yu
- Department of Emergency Medicine, Dean People’s Hospital, Jiujiang, China
| | - Haiya Feng
- Department of Burn Surgery, Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Yifei Jia
- Department of Burn Surgery, Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
10
|
Chen X, Wang T, Chen L, Zhao Y, Deng Y, Shen W, Li L, Yin Z, Zhang C, Cai G, Zhang M, Chen X. Cross-species single-cell analysis uncovers the immunopathological mechanisms associated with IgA nephropathy progression. JCI Insight 2024; 9:e173651. [PMID: 38716725 PMCID: PMC11141938 DOI: 10.1172/jci.insight.173651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/19/2024] [Indexed: 05/12/2024] Open
Abstract
IgA nephropathy (IgAN) represents the main cause of renal failure, while the precise pathogenetic mechanisms have not been fully determined. Herein, we conducted a cross-species single-cell survey on human IgAN and mouse and rat IgAN models to explore the pathogenic programs. Cross-species single-cell RNA sequencing (scRNA-Seq) revealed that the IgAN mesangial cells (MCs) expressed high levels of inflammatory signatures CXCL12, CCL2, CSF1, and IL-34 and specifically interacted with IgAN macrophages via the CXCL12/CXCR4, CSF1/IL-34/CSF1 receptor, and integrin subunit alpha X/integrin subunit alpha M/complement C3 (C3) axes. IgAN macrophages expressed high levels of CXCR4, PDGFB, triggering receptor expressed on myeloid cells 2, TNF, and C3, and the trajectory analysis suggested that these cells derived from the differentiation of infiltrating blood monocytes. Additionally, protein profiling of 21 progression and 28 nonprogression IgAN samples revealed that proteins CXCL12, C3, mannose receptor C-type 1, and CD163 were negatively correlated with estimated glomerular filtration rate (eGFR) value and poor prognosis (30% eGFR as composite end point). Last, a functional experiment revealed that specific blockade of the Cxcl12/Cxcr4 pathway substantially attenuated the glomerulus and tubule inflammatory injury, fibrosis, and renal function decline in the mouse IgAN model. This study provides insights into IgAN progression and may aid in the refinement of IgAN diagnosis and the optimization of treatment strategies.
Collapse
Affiliation(s)
- Xizhao Chen
- Department of Nephrology, The First Medical Center of Chinese People’s Liberation Army General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Tiantian Wang
- Department of Nephrology, The First Medical Center of Chinese People’s Liberation Army General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Lei Chen
- Department of Critical Care Nephrology and Blood Purification, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yinghua Zhao
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yiyao Deng
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Wanjun Shen
- Department of Nephrology, The First Medical Center of Chinese People’s Liberation Army General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Lin Li
- Department of Nephrology, The First Medical Center of Chinese People’s Liberation Army General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Zhong Yin
- Department of Nephrology, The First Medical Center of Chinese People’s Liberation Army General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Chaoran Zhang
- Department of Stomatology, The First Medical Center of People’s Liberation Army General Hospital, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, The First Medical Center of Chinese People’s Liberation Army General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Min Zhang
- Department of Nephrology, The First Medical Center of Chinese People’s Liberation Army General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, The First Medical Center of Chinese People’s Liberation Army General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
11
|
Mao M, Zhou Y, Zhang X, Zhao XY, Wang CD, Chen P. Renin-angiotensin-aldosterone-system inhibitors increase the serum level of complement component 4 in patients with immunoglobulin A nephropathy. Int Immunopharmacol 2024; 130:111669. [PMID: 38387189 DOI: 10.1016/j.intimp.2024.111669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/28/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
OBJECTIVE To investigate the impact of renin-angiotensin-aldosterone-system (RAAS) inhibitors on complement component 4 (C4) serum levels in patients with immunoglobulin A nephropathy (IgAN). METHODS A total of 423 patients diagnosed with IgAN at Shanxi Provincial People's Hospital, China, between 1 January 2017 and 31 December 2021 were divided into two groups, a RAAS inhibitor group and a non-RAAS inhibitor group, for comparative analysis. RESULTS The RAAS inhibitor group exhibited significantly increased C4 and eGFR levels and had a higher proportion of patients with hypertension compared with the non-RAAS inhibitor group. Serum C4 levels were positively correlated with 24-hour urine protein, serum C3 levels and blood uric acid levels but negatively correlated with eGFR levels. In addition, serum C4 levels were positively correlated with the severity of mesangial hypercellularity and interstitial/tubular injury. Through prognostic analysis, serum C4 was identified as an independent risk factor for the progression of IgAN. CONCLUSION Renin-angiotensin-aldosterone-system inhibitors can increase serum C4 levels in patients with IgAN and may represent an independent risk factor for disease progression.
Collapse
Affiliation(s)
- Min Mao
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, China
| | - Yun Zhou
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, China; Department of Nephrology, Shanxi Province Integrated TCM and WM Hospital, Taiyuan, China
| | - Xu Zhang
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, China
| | - Xiao-Yu Zhao
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, China
| | - Chen-Dan Wang
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, China
| | - Ping Chen
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, China.
| |
Collapse
|
12
|
Ma J, Xing J, Zhang Y, Liu G. Efficacy and safety of biologic agents for IgA nephropathy: A protocol for systematic review and meta-analysis. PLoS One 2024; 19:e0298732. [PMID: 38547115 PMCID: PMC10977724 DOI: 10.1371/journal.pone.0298732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/29/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND IgA nephropathy (IgAN) is the most prevalent primary glomerulonephritis worldwide and a leading cause of chronic kidney failure. There are currently no definitive therapeutic regimens to treat or prevent the progression of IgAN. However, biologic agents offer novel therapeutic approaches that target immunological mechanisms to slow or halt disease progression. The objective of this study is to evaluate the efficacy and safety of biologic agents in patients with IgA nephropathy. METHODS We will systematically search PubMed, EMbase, Web of Science, Cochrane Library, and www.clinicaltrials.gov for randomized controlled trials of biologic agents for the treatment of IgA nephropathy. The search period will span from the establishment of each database until October 2023. The quality assessment of included studies will be performed individually using the revised Cochrane risk-of-bias tool for randomized trials (RoB 2), and meta-analysis will be conducted using Revman 5.4.1 software. CONCLUSIONS The results of this study will provide evidence-based medical evidence for the clinical application of biologic agents in patients with IgA nephropathy. PROSPERO REGISTRATION NUMBER CRD42023400450.
Collapse
Affiliation(s)
- Jia Ma
- Shanxi Traditional Chinese Medical Hospital, Taiyuan, China
- Shanxi University of Chinese Medicine, Taiyuan, China
| | - Jianyue Xing
- Shanxi Traditional Chinese Medical Hospital, Taiyuan, China
| | - Yupeng Zhang
- Shanxi Traditional Chinese Medical Hospital, Taiyuan, China
| | - Guangzhen Liu
- Shanxi Traditional Chinese Medical Hospital, Taiyuan, China
| |
Collapse
|
13
|
Duan H, Shi Y, Zhang Q, Shi X, Zhang Y, Liu J, Zhang Y. Causal relationship between PCSK9 inhibitor and primary glomerular disease: a drug target Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1335489. [PMID: 38510702 PMCID: PMC10951069 DOI: 10.3389/fendo.2024.1335489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
Background Successive observational studies have highlighted low-density lipoprotein cholesterol (LDL-C) as a standalone risk factor for the progression of chronic kidney disease (CKD) to end-stage renal disease. Lowering LDL-C levels significantly reduces the incidence of atherosclerotic events in patients with progressive CKD. Recent research indicates that proprotein convertase subtilisin kexin 9 (PCSK9) inhibitors not only effectively lower LDL-C levels in CKD patients but also exhibit therapeutic potential for autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, and ulcerative colitis. However, the role of PCSK9 inhibitors (PCSK9i) in treating CKD beyond lowering LDL-C levels remains uncertain. Therefore, this study employs drug-targeted Mendelian randomization (MR) to investigate the causal impact of PCSK9i on primary glomerular diseases such as IgA nephropathy (IgAN), membranous nephropathy (MN), and nephrotic syndrome (NS). Methods Single-nucleotide polymorphisms (SNPs) linked to LDL-C were sourced from the Global Lipids Genetics Consortium genome-wide association study (GWAS). Genes situated in proximity to 3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), and PCSK9 served as proxies for therapeutic inhibition of these targets. The causal link between PCSK9i and the risk of primary glomerular disorders was discovered using drug-target MR studies. The HMGCR inhibitor, a drug target of statins, was utilized for comparative analysis with PCSK9i. Primary outcomes included the risk assessment for IgAN, MN, and NS, using the risk of coronary heart disease as a positive control. Results The inhibition of PCSK9, as proxied genetically, was found to significantly reduce the risk of IgAN [odds ratio, OR (95% confidence interval, CI) = 0.05 (-1.82 to 1.93), p = 2.10 × 10-3]. Conversely, this inhibition was associated with an increased risk of NS [OR (95% CI) = 1.78 (1.34-2.22), p = 0.01]. Similarly, HMGCR inhibitors (HMGCRi) demonstrated a potential reduction in the risk of IgAN [OR (95%CI) = 0.0032 (-3.58 to 3.59), p = 1.60 × 10-3). Conclusions PCSK9i markedly decreased the risk of IgAN, suggesting a potential mechanism beyond their primary effect on LDL-C. However, these inhibitors were also associated with an increased risk of NS. On the other hand, HMGCRi appears to serve as a protective factor against IgAN. Conversely, PCSK9i may pose a risk factor for NS, suggesting the necessity for cautious application and further research into their impacts on various glomerular diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yu Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Di Leo V, Annese F, Papadia F, Russo MS, Giliberti M, Sallustio F, Gesualdo L. Refractory IgA Nephropathy: A Challenge for Future Nephrologists. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:274. [PMID: 38399561 PMCID: PMC10890070 DOI: 10.3390/medicina60020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024]
Abstract
IgA nephropathy (IgAN) represents the most prevalent form of primary glomerulonephritis, and, on a global scale, it ranks among the leading culprits behind end-stage kidney disease (ESKD). Presently, the primary strategy for managing IgAN revolves around optimizing blood pressure and mitigating proteinuria. This is achieved through the utilization of renin-angiotensin system (RAS) inhibitors, namely, angiotensin-converting enzyme inhibitors (ACEi) and angiotensin receptor blockers (ARBs). As outlined by the KDIGO guidelines, individuals who continue to show a persistent high risk of progressive ESKD, even with comprehensive supportive care, are candidates for glucocorticoid therapy. Despite these therapies, some patients have a disease refractory to treatment, defined as individuals that present a 24 h urinary protein persistently >1 g after at least two rounds of regular steroids (methylprednisolone or prednisone) and/or immunosuppressant therapy (e.g., mycophenolate mofetil), or who do not tolerate regular steroids and/or immunosuppressant therapy. The aim of this Systematic Review is to revise the current literature, using the biomedical database PubMed, to investigate possible therapeutic strategies, including SGLT2 inhibitors, endothelin receptor blockers, targeted-release budesonide, B cell proliferation and differentiation inhibitors, fecal microbiota transplantation, as well as blockade of complement components.
Collapse
|
15
|
Wu Z, Zhang Z, Zhou S, Xie M, Liu L, Luo C, Zheng F, Qiu W, Wang Y, Zhang J. ERK1/2-dependent activity of SOX9 is required for sublytic C5b-9-induced expression of FGF1, PDGFα, and TGF-β1 in rat Thy-1 nephritis. Int Immunopharmacol 2024; 127:111372. [PMID: 38118314 DOI: 10.1016/j.intimp.2023.111372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/22/2023]
Abstract
Mesangial proliferative glomerulonephritis (MsPGN) and its related rat model Thy-1 nephritis (Thy-1N) are associated with C5b-9 deposition and are characterized by proliferation of glomerular mesangial cell (GMC) and expansion of extracellular matrix (ECM) expansion, alongside overexpression of multiple growth factors. Although fibroblast growth factor 1 (FGF1), platelet-derived growth factor alpha (PDGFα), and transforming growth factor beta 1 (TGF-β1) are well known for their proproliferative and profibrotic roles, the molecular mechanisms responsible for regulating the expression of these growth factors have not been thoroughly elucidated. In this study, we found that sublytic C5b-9 induction of sex-determining region Y-box 9 (SOX9) transactivated FGF1, PDGFα, and TGF-β1 genes in GMCs, resulting in a significant increase in their mRNA and protein levels. Besides, sublytic C5b-9 induction of activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) phosphorylated SOX9 at serine 181 and serine 64, which enhanced SOX9's ability to transactivate FGF1, PDGFα, and TGF-β1 genes in GMCs. Furthermore, we demonstrated that inhibiting ERK1/2 activation or silencing either ERK1/2 or SOX9 gene led to reduced SOX9 phosphorylation, decreased generation of FGF1, PDGFα, and TGF-β1, and ameliorated glomerular injury in rat Thy-1N. Overall, these findings suggest that expression of FGF1, PDGFα, and TGF-β1 is promoted by ERK1/2-mediated phosphorylation of SOX9, which may provide a valuable insight into the pathogenesis of MsPGN and offer a potential target for the development of novel treatment strategies for MsPGN.
Collapse
Affiliation(s)
- Zhijiao Wu
- Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Zhiwei Zhang
- Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Sicheng Zhou
- School of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Mengxiao Xie
- Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Longfei Liu
- Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Can Luo
- Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Feixiang Zheng
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Wen Qiu
- Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China; Key Laboratory of Immune Microenvironment and Disease, Nanjing Medical University, Nanjing, China; National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, China
| | - Yingwei Wang
- Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China; Key Laboratory of Immune Microenvironment and Disease, Nanjing Medical University, Nanjing, China; National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, China
| | - Jing Zhang
- Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China; Key Laboratory of Immune Microenvironment and Disease, Nanjing Medical University, Nanjing, China; National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
16
|
Sun M, Shi G, Zhang X, Kan C, Xie S, Peng W, Liu W, Wang P, Zhang R. Deciphering roles of protein post-translational modifications in IgA nephropathy progression and potential therapy. Aging (Albany NY) 2024; 16:964-982. [PMID: 38175721 PMCID: PMC10817402 DOI: 10.18632/aging.205406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024]
Abstract
Immunoglobulin A nephropathy (IgAN), one type of glomerulonephritis, displays the accumulation of glycosylated IgA in the mesangium. Studies have demonstrated that both genetics and epigenetics play a pivotal role in the occurrence and progression of IgAN. Post-translational modification (PTM) has been revealed to critically participate in IgAN development and progression because PTM dysregulation results in impaired degradation of proteins that regulate IgAN pathogenesis. A growing number of studies identify that PTMs, including sialylation, o-glycosylation, galactosylation, phosphorylation, ubiquitination and deubiquitination, modulate the initiation and progression of IgAN. Hence, in this review, we discuss the functions and mechanisms of PTMs in regulation of IgAN. Moreover, we outline numerous compounds that govern PTMs and attenuate IgAN progression. Targeting PTMs might be a useful strategy to ameliorate IgAN.
Collapse
Affiliation(s)
- Mengying Sun
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Guojuan Shi
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Xiaohan Zhang
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Chao Kan
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Shimin Xie
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Weixiang Peng
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Wenjun Liu
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang 310018, China
| | - Peter Wang
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang 310018, China
| | - Rui Zhang
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| |
Collapse
|
17
|
Saleem N, Nasir H, Anwar F, Aziz M, Khurshid K, Bashir S, Khan A. To evaluate the utility of Oxford classification in predicting renal outcome in IgA nephropathy patients. Int Urol Nephrol 2024; 56:345-353. [PMID: 37378850 DOI: 10.1007/s11255-023-03685-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Immunoglobulin A Nephropathy (IgAN) is a heterogeneous disorder. Multiple ethnicities conducted studies to assess the effectiveness of the Oxford classification of IgAN in prognostication. However, there is no study on the Pakistani population. We aim to identify its prognostic effectivity in our patients. METHODS We retrospectively reviewed the medical records of 93 biopsy-proven cases of primary IgAN. We collected the clinical and pathological data at baseline and on follow-ups. The median follow-up period was 12 months. We defined the renal outcome as a ≥ 50% decline in eGFR or end-stage renal disease (ESRD). RESULTS Of 93 cases, 67.7% were males with a median age of 29. Glomerulosclerosis was the most prevalent lesion (71%). The median MEST-C was 3. On follow-up, median serum creatinine worsened from 1.92 to 2.2 mg/dL, and median proteinuria reduced from 2.3 g/g to 1.072 g/g. The reported renal outcome was 29%. T and C scores and MEST-C scores above 2 were significantly associated with pre-biopsy eGFR. On Kaplan-Meier analysis, the T and C scores' association was significant with the renal outcome (p-value 0.000 and 0.002). In univariate and multivariate analyses, the association of T-score (p-value 0.000, HR 4.691), total MEST-C score (p-value 0.019), and baseline serum creatinine (p-value 0.036, HR 1.188) were significant with the outcome. CONCLUSION We validate the prognostic significance of the Oxford classification. T and C scores, baseline serum creatinine, and total MEST-C score significantly affect the renal outcome. Furthermore, we recommend the inclusion of the total MEST-C score in determining the IgAN prognosis.
Collapse
Affiliation(s)
- Nida Saleem
- Department of NeCollege of Medicine and Public Health, Flinders University, Sturt Rd, Bedford Park, SA , 5042 , Adelaide, Australia.
- Westmead Hospital, Cnr Hawkesbury Road and Darcy Rd, Westmead, NSW, 2145, Sydney, Australia.
- Centre for Kidney Research, Kids Research Institute, The Children's Hospital at Westmead, NSW, 2145, Sydney, Australia.
| | - Humaira Nasir
- Department of Pathology, Shifa International Hospital, H-8/4, Pitras Bukhari Road, Islamabad, Pakistan
| | - Fatima Anwar
- Department of Pathology, Shifa International Hospital, H-8/4, Pitras Bukhari Road, Islamabad, Pakistan
| | - Maliha Aziz
- Department of Clinical Research Centre, Shifa International Hospital, Islamabad, Pakistan
| | - Kiran Khurshid
- Department of Nephrology, Shifa International Hospital, H-8/4, Pitras Bukhari Road, Islamabad, Pakistan
| | - Saima Bashir
- Department of Nephrology, Shifa International Hospital, H-8/4, Pitras Bukhari Road, Islamabad, Pakistan
| | - Asrar Khan
- Department of Nephrology, University of Wollongong, (A) Suite 606, Level 6, 360-364 Crown Street, Wollongong, NSW, 2500, Syndey, Australia
- Westmead Hospital, Cnr Hawkesbury Road and Darcy Rd, Westmead, NSW, 2145, Sydney, Australia
| |
Collapse
|
18
|
Mathur M, Chan TM, Oh KH, Kooienga L, Zhuo M, Pinto CS, Chacko B. A PRoliferation-Inducing Ligand (APRIL) in the Pathogenesis of Immunoglobulin A Nephropathy: A Review of the Evidence. J Clin Med 2023; 12:6927. [PMID: 37959392 PMCID: PMC10650434 DOI: 10.3390/jcm12216927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
A PRoliferation-Inducing Ligand (APRIL), the thirteenth member of the tumor necrosis factor superfamily, plays a key role in the regulation of activated B cells, the survival of long-lived plasma cells, and immunoglobulin (Ig) isotype class switching. Several lines of evidence have implicated APRIL in the pathogenesis of IgA nephropathy (IgAN). Globally, IgAN is the most common primary glomerulonephritis, and it can progress to end-stage kidney disease; yet, disease-modifying treatments for this condition have historically been lacking. The preliminary data in ongoing clinical trials indicate that APRIL inhibition can reduce proteinuria and slow the rate of kidney disease progression by acting at an upstream level in IgAN pathogenesis. In this review, we examine what is known about the physiologic roles of APRIL and evaluate the experimental and epidemiological evidence describing how these normal biologic processes are thought to be subverted in IgAN. The weight of the preclinical, clinical, and genetic data supporting a key role for APRIL in IgAN has galvanized pharmacologic research, and several anti-APRIL drug candidates have now entered clinical development for IgAN. Herein, we present an overview of the clinical results to date. Finally, we explore where more research and evidence are needed to transform potential therapies into clinical benefits for patients with IgAN.
Collapse
Affiliation(s)
| | - Tak Mao Chan
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China;
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea;
| | - Laura Kooienga
- Colorado Kidney and Vascular Care, Denver, CO 80012, USA;
| | - Min Zhuo
- Visterra, Inc., Waltham, MA 02451, USA;
- Division of Renal Medicine, Department of Medicine Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Cibele S. Pinto
- Otsuka Pharmaceutical Development & Commercialization, Princeton, NJ 08540, USA;
| | - Bobby Chacko
- Nephrology and Transplantation Unit, John Hunter Hospital, Newcastle, NSW 2305, Australia;
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
19
|
Tziastoudi M, Chronopoulou I, Pissas G, Cholevas C, Eleftheriadis T, Stefanidis I. Tumor Necrosis Factor-α G-308A Polymorphism and Sporadic IgA Nephropathy: A Meta-Analysis Using a Genetic Model-Free Approach. Genes (Basel) 2023; 14:1488. [PMID: 37510392 PMCID: PMC10378840 DOI: 10.3390/genes14071488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Tumor necrosis factor-α (TNF-α) is a potent pro-inflammatory cytokine, involved in the pathogenesis and progression of immunoglobulin A nephropathy (IgAN). A bi-allelic polymorphism in the promoter region, at position -308 (G/A) of the TNF-α gene (rs1800629) is associated with an increased TNF-a production. However, several previous association studies of TNF-α G-308A polymorphism and IgAN rendered contradictory findings. The objective of the present study is to shed light on these inconclusive results and clarify the role of TNF-α and any possible contribution of this factor in the development and progression of sporadic IgAN. Therefore, a meta-analysis of all available genetic association studies relating the TNF-α G-308A polymorphism to the risk for development and/or progression of IgAN was conducted. Seven studies were included in the meta-analysis. Three of them included populations of European descent (Caucasians) and four involved Asians. The generalized odds ratio (ORG) was used to estimate the risk for the development and/or progression of the disease. Overall, the meta-analysis did not detect any significant association between the G-308A variant and both the risk of developing IgAN and the risk for progression of IgAN. In conclusion, these results suggest that TNF-α does not constitute a key component in the genetic architecture of sporadic IgAN. However, further evidence deciphering the influence of TNF-α on IgAN is still needed.
Collapse
Affiliation(s)
- Maria Tziastoudi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece
| | - Ioanna Chronopoulou
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece
| | - Georgios Pissas
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece
| | - Christos Cholevas
- First Department of Ophthalmology, Faculty of Health Sciences, Aristotle University of Thessaloniki School of Medicine, AHEPA Hospital, 54636 Thessaloniki, Greece
| | - Theodoros Eleftheriadis
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece
| |
Collapse
|