1
|
Pušnik L, Lechner L, Serša I, Cvetko E, Haas P, Jengojan SA, Snoj Ž. 3D fascicular reconstruction of median and ulnar nerve: initial experience and comparison between high-resolution ultrasound and MR microscopy. Eur Radiol Exp 2024; 8:100. [PMID: 39196445 PMCID: PMC11358559 DOI: 10.1186/s41747-024-00495-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/04/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND The complex anatomy of peripheral nerves has been traditionally investigated through histological microsections, with inherent limitations. We aimed to compare three-dimensional (3D) reconstructions of median and ulnar nerves acquired with tomographic high-resolution ultrasound (HRUS) and magnetic resonance microscopy (MRM) and assess their capacity to depict intraneural anatomy. METHODS Three fresh-frozen human upper extremity specimens were prepared for HRUS imaging by submersion in a water medium. The median and ulnar nerves were pierced with sutures to improve orientation during imaging. Peripheral nerve 3D HRUS scanning was performed on the mid-upper arm using a broadband linear probe (10-22 MHz) equipped with a tomographic 3D HRUS system. Following excision, nerves were cut into 16-mm segments and loaded into the MRM probe of a 9.4-T system (scanning time 27 h). Fascicle and nerve counting was performed to estimate the nerve volume, fascicle volume, fascicle count, and number of interfascicular connections. HRUS reconstructions employed artificial intelligence-based algorithms, while MRM reconstructions were generated using an open-source imaging software 3D slicer. RESULTS Compared to MRM, 3D HRUS underestimated nerve volume by up to 22% and volume of all fascicles by up to 11%. Additionally, 3D HRUS depicted 6-60% fewer fascicles compared to MRM and visualized approximately half as many interfascicular connections. CONCLUSION MRM demonstrated a more detailed fascicular depiction compared to 3D HRUS, with a greater capacity for visualizing smaller fascicles. While 3D HRUS reconstructions can offer supplementary data in peripheral nerve assessment, their limitations in depicting interfascicular connections and small fascicles within clusters necessitate cautious interpretation. CLINICAL RELEVANCE STATEMENT Although 3D HRUS reconstructions can offer supplementary data in peripheral nerve assessment, even in intraoperative settings, their limitations in depicting interfascicular branches and small fascicles within clusters require cautious interpretation. KEY POINTS 3D HRUS was limited in visualizing nerve interfascicular connections. MRM demonstrated better nerve fascicle depiction than 3D HRUS. MRM depicted more nerve interfascicular connections than 3D HRUS.
Collapse
Affiliation(s)
- Luka Pušnik
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Lisa Lechner
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Igor Serša
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Condensed Matter Physics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Erika Cvetko
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Philipp Haas
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Suren Armeni Jengojan
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
| | - Žiga Snoj
- Department of Radiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Institute of Radiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Singh RK, Nayak NP, Behl T, Arora R, Anwer MK, Gulati M, Bungau SG, Brisc MC. Exploring the Intersection of Geophysics and Diagnostic Imaging in the Health Sciences. Diagnostics (Basel) 2024; 14:139. [PMID: 38248016 PMCID: PMC11154438 DOI: 10.3390/diagnostics14020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
To develop diagnostic imaging approaches, this paper emphasizes the transformational potential of merging geophysics with health sciences. Diagnostic imaging technology improvements have transformed the health sciences by enabling earlier and more precise disease identification, individualized therapy, and improved patient care. This review article examines the connection between geophysics and diagnostic imaging in the field of health sciences. Geophysics, which is typically used to explore Earth's subsurface, has provided new uses of its methodology in the medical field, providing innovative solutions to pressing medical problems. The article examines the different geophysical techniques like electrical imaging, seismic imaging, and geophysics and their corresponding imaging techniques used in health sciences like tomography, magnetic resonance imaging, ultrasound imaging, etc. The examination includes the description, similarities, differences, and challenges associated with these techniques and how modified geophysical techniques can be used in imaging methods in health sciences. Examining the progression of each method from geophysics to medical imaging and its contributions to illness diagnosis, treatment planning, and monitoring are highlighted. Also, the utilization of geophysical data analysis techniques like signal processing and inversion techniques in image processing in health sciences has been briefly explained, along with different mathematical and computational tools in geophysics and how they can be implemented for image processing in health sciences. The key findings include the development of machine learning and artificial intelligence in geophysics-driven medical imaging, demonstrating the revolutionary effects of data-driven methods on precision, speed, and predictive modeling.
Collapse
Affiliation(s)
- Rahul Kumar Singh
- Energy Cluster, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India; (R.K.S.); (N.P.N.)
| | - Nirlipta Priyadarshini Nayak
- Energy Cluster, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India; (R.K.S.); (N.P.N.)
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali 140306, Punjab, India
| | - Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India;
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 1444411, Punjab, India;
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Mihaela Cristina Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| |
Collapse
|
3
|
Ashir A, Jerban S, Barrère V, Wu Y, Shah SB, Andre MP, Chang EY. Skeletal Muscle Assessment Using Quantitative Ultrasound: A Narrative Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:4763. [PMID: 37430678 PMCID: PMC10222479 DOI: 10.3390/s23104763] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 07/12/2023]
Abstract
Ultrasound (US) is an important imaging tool for skeletal muscle analysis. The advantages of US include point-of-care access, real-time imaging, cost-effectiveness, and absence of ionizing radiation. However, US can be highly dependent on the operator and/or US system, and a portion of the potentially useful information carried by raw sonographic data is discarded in image formation for routine qualitative US. Quantitative ultrasound (QUS) methods provide analysis of the raw or post-processed data, revealing additional information about normal tissue structure and disease status. There are four QUS categories that can be used on muscle and are important to review. First, quantitative data derived from B-mode images can help determine the macrostructural anatomy and microstructural morphology of muscle tissues. Second, US elastography can provide information about muscle elasticity or stiffness through strain elastography or shear wave elastography (SWE). Strain elastography measures the induced tissue strain caused either by internal or external compression by tracking tissue displacement with detectable speckle in B-mode images of the examined tissue. SWE measures the speed of induced shear waves traveling through the tissue to estimate the tissue elasticity. These shear waves may be produced using external mechanical vibrations or internal "push pulse" ultrasound stimuli. Third, raw radiofrequency signal analyses provide estimates of fundamental tissue parameters, such as the speed of sound, attenuation coefficient, and backscatter coefficient, which correspond to information about muscle tissue microstructure and composition. Lastly, envelope statistical analyses apply various probability distributions to estimate the number density of scatterers and quantify coherent to incoherent signals, thus providing information about microstructural properties of muscle tissue. This review will examine these QUS techniques, published results on QUS evaluation of skeletal muscles, and the strengths and limitations of QUS in skeletal muscle analysis.
Collapse
Affiliation(s)
- Aria Ashir
- Department of Radiology, University of California, San Diego, CA 92093, USA; (S.J.); (M.P.A.); (E.Y.C.)
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (V.B.); (S.B.S.)
- Department of Radiology, Santa Barbara Cottage Hospital, Santa Barbara, CA 93105, USA
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, CA 92093, USA; (S.J.); (M.P.A.); (E.Y.C.)
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (V.B.); (S.B.S.)
- Department of Orthopaedic Surgery, University of California, San Diego, CA 92093, USA;
| | - Victor Barrère
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (V.B.); (S.B.S.)
- Department of Orthopaedic Surgery, University of California, San Diego, CA 92093, USA;
| | - Yuanshan Wu
- Department of Orthopaedic Surgery, University of California, San Diego, CA 92093, USA;
- Department of Bioengineering, University of California, San Diego, CA 92093, USA
| | - Sameer B. Shah
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (V.B.); (S.B.S.)
- Department of Orthopaedic Surgery, University of California, San Diego, CA 92093, USA;
- Department of Bioengineering, University of California, San Diego, CA 92093, USA
| | - Michael P. Andre
- Department of Radiology, University of California, San Diego, CA 92093, USA; (S.J.); (M.P.A.); (E.Y.C.)
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (V.B.); (S.B.S.)
| | - Eric Y. Chang
- Department of Radiology, University of California, San Diego, CA 92093, USA; (S.J.); (M.P.A.); (E.Y.C.)
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (V.B.); (S.B.S.)
| |
Collapse
|