1
|
Larkin A, Kim JS, Kim N, Baek SH, Yamada S, Park K, Tai K, Yanagi Y, Park JH. Accuracy of artificial intelligence-assisted growth prediction in skeletal Class I preadolescent patients using serial lateral cephalograms for a 2-year growth interval. Orthod Craniofac Res 2024; 27:535-543. [PMID: 38321788 DOI: 10.1111/ocr.12764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
OBJECTIVE To investigate the accuracy of artificial intelligence-assisted growth prediction using a convolutional neural network (CNN) algorithm and longitudinal lateral cephalograms (Lat-cephs). MATERIALS AND METHODS A total of 198 Japanese preadolescent children, who had skeletal Class I malocclusion and whose Lat-cephs were available at age 8 years (T0) and 10 years (T1), were allocated into the training, validation, and test phases (n = 161, n = 17, n = 20). Orthodontists and the CNN model identified 28 hard-tissue landmarks (HTL) and 19 soft-tissue landmarks (STL). The mean prediction error values were defined as 'excellent,' 'very good,' 'good,' 'acceptable,' and 'unsatisfactory' (criteria: 0.5 mm, 1.0 mm, 1.5 mm, and 2.0 mm, respectively). The degree of accurate prediction percentage (APP) was defined as 'very high,' 'high,' 'medium,' and 'low' (criteria: 90%, 70%, and 50%, respectively) according to the percentage of subjects that showed the error range within 1.5 mm. RESULTS All HTLs showed acceptable-to-excellent mean PE values, while the STLs Pog', Gn', and Me' showed unsatisfactory values, and the rest showed good-to-acceptable values. Regarding the degree of APP, HTLs Ba, ramus posterior, Pm, Pog, B-point, Me, and mandibular first molar root apex exhibited low APPs. The STLs labrale superius, lower embrasure, lower lip, point of lower profile, B', Pog,' Gn' and Me' also exhibited low APPs. The remainder of HTLs and STLs showed medium-to-very high APPs. CONCLUSION Despite the possibility of using the CNN model to predict growth, further studies are needed to improve the prediction accuracy in HTLs and STLs of the chin area.
Collapse
Affiliation(s)
- A Larkin
- Postgraduate Orthodontic Program, Arizona School of Dentistry & Oral Health, A.T. Still University, Mesa, Arizona, USA
| | - J-S Kim
- Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - N Kim
- Department of Convergence Medicine, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - S-H Baek
- Department of Orthodontics, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - S Yamada
- Department of Dental Informatics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - K Park
- Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - K Tai
- Postgraduate Orthodontic Program, Arizona School of Dentistry & Oral Health, A.T. Still University, Mesa, Arizona, USA
- Private Practice of Orthodontics, Okayama, Japan
| | - Y Yanagi
- Department of Dental Informatics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - J H Park
- Postgraduate Orthodontic Program, Arizona School of Dentistry & Oral Health, A.T. Still University, Mesa, Arizona, USA
- Graduate School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Dipalma G, Inchingolo AD, Inchingolo AM, Piras F, Carpentiere V, Garofoli G, Azzollini D, Campanelli M, Paduanelli G, Palermo A, Inchingolo F. Artificial Intelligence and Its Clinical Applications in Orthodontics: A Systematic Review. Diagnostics (Basel) 2023; 13:3677. [PMID: 38132261 PMCID: PMC10743240 DOI: 10.3390/diagnostics13243677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
This review aims to analyze different strategies that make use of artificial intelligence to enhance diagnosis, treatment planning, and monitoring in orthodontics. Orthodontics has seen significant technological advancements with the introduction of digital equipment, including cone beam computed tomography, intraoral scanners, and software coupled to these devices. The use of deep learning in software has sped up image processing processes. Deep learning is an artificial intelligence technology that trains computers to analyze data like the human brain does. Deep learning models are capable of recognizing complex patterns in photos, text, audio, and other data to generate accurate information and predictions. MATERIALS AND METHODS Pubmed, Scopus, and Web of Science were used to discover publications from 1 January 2013 to 18 October 2023 that matched our topic. A comparison of various artificial intelligence applications in orthodontics was generated. RESULTS A final number of 33 studies were included in the review for qualitative analysis. CONCLUSIONS These studies demonstrate the effectiveness of AI in enhancing orthodontic diagnosis, treatment planning, and assessment. A lot of articles emphasize the integration of artificial intelligence into orthodontics and its potential to revolutionize treatment monitoring, evaluation, and patient outcomes.
Collapse
Affiliation(s)
- Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (F.P.); (V.C.); (G.G.); (D.A.); (M.C.); (G.P.); (F.I.)
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (F.P.); (V.C.); (G.G.); (D.A.); (M.C.); (G.P.); (F.I.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (F.P.); (V.C.); (G.G.); (D.A.); (M.C.); (G.P.); (F.I.)
| | - Fabio Piras
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (F.P.); (V.C.); (G.G.); (D.A.); (M.C.); (G.P.); (F.I.)
| | - Vincenzo Carpentiere
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (F.P.); (V.C.); (G.G.); (D.A.); (M.C.); (G.P.); (F.I.)
| | - Grazia Garofoli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (F.P.); (V.C.); (G.G.); (D.A.); (M.C.); (G.P.); (F.I.)
| | - Daniela Azzollini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (F.P.); (V.C.); (G.G.); (D.A.); (M.C.); (G.P.); (F.I.)
| | - Merigrazia Campanelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (F.P.); (V.C.); (G.G.); (D.A.); (M.C.); (G.P.); (F.I.)
| | - Gregorio Paduanelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (F.P.); (V.C.); (G.G.); (D.A.); (M.C.); (G.P.); (F.I.)
| | - Andrea Palermo
- Implant Dentistry College of Medicine and Dentistry Birmingham, University of Birmingham, Birmingham B46BN, UK;
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (F.P.); (V.C.); (G.G.); (D.A.); (M.C.); (G.P.); (F.I.)
| |
Collapse
|
3
|
Kim E, Kuroda Y, Soeda Y, Koizumi S, Yamaguchi T. Validation of Machine Learning Models for Craniofacial Growth Prediction. Diagnostics (Basel) 2023; 13:3369. [PMID: 37958265 PMCID: PMC10647775 DOI: 10.3390/diagnostics13213369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
This study identified the most accurate model for predicting longitudinal craniofacial growth in a Japanese population using statistical methods and machine learning. Longitudinal lateral cephalometric radiographs were collected from 59 children (27 boys and 32 girls) with no history of orthodontic treatment. Multiple regression analysis, least absolute shrinkage and selection operator, radial basis function network, multilayer perceptron, and gradient-boosted decision tree were used. The independent variables included 26 coordinated values of skeletal landmarks, 13 linear skeletal parameters, and 17 angular skeletal parameters in children ages 6 to 12 years. The dependent variables were the values of the 26 coordinated skeletal landmarks, 13 skeletal linear parameters, and 17 skeletal angular parameters at 13 years of age. The difference between the predicted and actual measured values was calculated using the root-mean-square error. The prediction model for craniofacial growth using the least absolute shrinkage and selection operator had the smallest average error for all values of skeletal landmarks, linear parameters, and angular parameters. The highest prediction accuracies when predicting skeletal linear and angular parameters for 13-year-olds were 97.87% and 94.45%, respectively. This model incorporates several independent variables and is useful for future orthodontic treatment because it can predict individual growth.
Collapse
Affiliation(s)
- Eungyeong Kim
- Department of Orthodontics, School of Dentistry, Kanagawa Dental University, Yokosuka 238-8580, Japan; (S.K.); (T.Y.)
| | | | | | - So Koizumi
- Department of Orthodontics, School of Dentistry, Kanagawa Dental University, Yokosuka 238-8580, Japan; (S.K.); (T.Y.)
| | - Tetsutaro Yamaguchi
- Department of Orthodontics, School of Dentistry, Kanagawa Dental University, Yokosuka 238-8580, Japan; (S.K.); (T.Y.)
| |
Collapse
|
4
|
Volovic J, Badirli S, Ahmad S, Leavitt L, Mason T, Bhamidipalli SS, Eckert G, Albright D, Turkkahraman H. A Novel Machine Learning Model for Predicting Orthodontic Treatment Duration. Diagnostics (Basel) 2023; 13:2740. [PMID: 37685278 PMCID: PMC10486486 DOI: 10.3390/diagnostics13172740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
In the field of orthodontics, providing patients with accurate treatment time estimates is of utmost importance. As orthodontic practices continue to evolve and embrace new advancements, incorporating machine learning (ML) methods becomes increasingly valuable in improving orthodontic diagnosis and treatment planning. This study aimed to develop a novel ML model capable of predicting the orthodontic treatment duration based on essential pre-treatment variables. Patients who completed comprehensive orthodontic treatment at the Indiana University School of Dentistry were included in this retrospective study. Fifty-seven pre-treatment variables were collected and used to train and test nine different ML models. The performance of each model was assessed using descriptive statistics, intraclass correlation coefficients, and one-way analysis of variance tests. Random Forest, Lasso, and Elastic Net were found to be the most accurate, with a mean absolute error of 7.27 months in predicting treatment duration. Extraction decision, COVID, intermaxillary relationship, lower incisor position, and additional appliances were identified as important predictors of treatment duration. Overall, this study demonstrates the potential of ML in predicting orthodontic treatment duration using pre-treatment variables.
Collapse
Affiliation(s)
- James Volovic
- Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, Indianapolis, IN 46202, USA; (J.V.); (S.A.); (D.A.)
| | | | - Sunna Ahmad
- Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, Indianapolis, IN 46202, USA; (J.V.); (S.A.); (D.A.)
| | - Landon Leavitt
- Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, Indianapolis, IN 46202, USA; (J.V.); (S.A.); (D.A.)
| | - Taylor Mason
- Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, Indianapolis, IN 46202, USA; (J.V.); (S.A.); (D.A.)
| | - Surya Sruthi Bhamidipalli
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.S.B.); (G.E.)
| | - George Eckert
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.S.B.); (G.E.)
| | - David Albright
- Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, Indianapolis, IN 46202, USA; (J.V.); (S.A.); (D.A.)
| | - Hakan Turkkahraman
- Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, Indianapolis, IN 46202, USA; (J.V.); (S.A.); (D.A.)
| |
Collapse
|
5
|
Parrish M, O’Connell E, Eckert G, Hughes J, Badirli S, Turkkahraman H. Short- and Long-Term Prediction of the Post-Pubertal Mandibular Length and Y-Axis in Females Utilizing Machine Learning. Diagnostics (Basel) 2023; 13:2729. [PMID: 37685267 PMCID: PMC10486405 DOI: 10.3390/diagnostics13172729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/07/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
The aim of this study was to create a novel machine learning (ML) algorithm for predicting the post-pubertal mandibular length and Y-axis in females. Cephalometric data from 176 females with Angle Class I occlusion were used to train and test seven ML algorithms. For all ML methods tested, the mean absolute errors (MAEs) for the 2-year prediction ranged from 2.78 to 5.40 mm and 0.88 to 1.48 degrees, respectively. For the 4-year prediction, MAEs of mandibular length and Y-axis ranged from 3.21 to 4.00 mm and 1.19 to 5.12 degrees, respectively. The most predictive factors for post-pubertal mandibular length were mandibular length at previous timepoints, age, sagittal positions of the maxillary and mandibular skeletal bases, mandibular plane angle, and anterior and posterior face heights. The most predictive factors for post-pubertal Y-axis were Y-axis at previous timepoints, mandibular plane angle, and sagittal positions of the maxillary and mandibular skeletal bases. ML methods were identified as capable of predicting mandibular length within 3 mm and Y-axis within 1 degree. Compared to each other, all of the ML algorithms were similarly accurate, with the exception of multilayer perceptron regressor.
Collapse
Affiliation(s)
- Matthew Parrish
- Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, Indiana University Purdue University at Indianapolis, Indianapolis, IN 46202, USA; (M.P.); (J.H.)
| | - Ella O’Connell
- Indiana University School of Dentistry, Indiana University Purdue University at Indianapolis, Indianapolis, IN 46202, USA;
| | - George Eckert
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Jay Hughes
- Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, Indiana University Purdue University at Indianapolis, Indianapolis, IN 46202, USA; (M.P.); (J.H.)
| | | | - Hakan Turkkahraman
- Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, Indiana University Purdue University at Indianapolis, Indianapolis, IN 46202, USA; (M.P.); (J.H.)
| |
Collapse
|
6
|
Zakhar G, Hazime S, Eckert G, Wong A, Badirli S, Turkkahraman H. Prediction of Pubertal Mandibular Growth in Males with Class II Malocclusion by Utilizing Machine Learning. Diagnostics (Basel) 2023; 13:2713. [PMID: 37627972 PMCID: PMC10453460 DOI: 10.3390/diagnostics13162713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The goal of this study was to create a novel machine learning (ML) model that can predict the magnitude and direction of pubertal mandibular growth in males with Class II malocclusion. Lateral cephalometric radiographs of 123 males at three time points (T1: 12; T2: 14; T3: 16 years old) were collected from an online database of longitudinal growth studies. Each radiograph was traced, and seven different ML models were trained using 38 data points obtained from 92 subjects. Thirty-one subjects were used as the test group to predict the post-pubertal mandibular length and y-axis, using input data from T1 and T2 combined (2 year prediction), and T1 alone (4 year prediction). Mean absolute errors (MAEs) were used to evaluate the accuracy of each model. For all ML methods tested using the 2 year prediction, the MAEs for post-pubertal mandibular length ranged from 2.11-6.07 mm to 0.85-2.74° for the y-axis. For all ML methods tested with 4 year prediction, the MAEs for post-pubertal mandibular length ranged from 2.32-5.28 mm to 1.25-1.72° for the y-axis. Besides its initial length, the most predictive factors for mandibular length were found to be chronological age, upper and lower face heights, upper and lower incisor positions, and inclinations. For the y-axis, the most predictive factors were found to be y-axis at earlier time points, SN-MP, SN-Pog, SNB, and SNA. Although the potential of ML techniques to accurately forecast future mandibular growth in Class II cases is promising, a requirement for more substantial sample sizes exists to further enhance the precision of these predictions.
Collapse
Affiliation(s)
- Grant Zakhar
- Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, Indianapolis, IN 46202, USA; (G.Z.); (A.W.)
| | - Samir Hazime
- Indiana University School of Dentistry, Indianapolis, IN 46202, USA;
| | - George Eckert
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Ariel Wong
- Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, Indianapolis, IN 46202, USA; (G.Z.); (A.W.)
| | | | - Hakan Turkkahraman
- Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, Indianapolis, IN 46202, USA; (G.Z.); (A.W.)
| |
Collapse
|
7
|
Turkkahraman H. Embracing the Unprecedented Pace of Change: Artificial Intelligence's Impact on Dentistry and Beyond. Eur J Dent 2023; 17:567-568. [PMID: 37473781 PMCID: PMC10569829 DOI: 10.1055/s-0043-1770913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Affiliation(s)
- Hakan Turkkahraman
- Department of Orthodontics and Oral Facial Genetics, School of Dentistry, Indiana University, Indianapolis, Indiana, United States
| |
Collapse
|