1
|
Luo C, Li S, Han Y, Ling J, Wu X, Chen L, Wang D, Chen J. Noninvasive identification of HER2 status by integrating multiparametric MRI-based radiomics model with the vesical imaging-reporting and data system (VI-RADS) score in bladder urothelial carcinoma. Abdom Radiol (NY) 2025:10.1007/s00261-024-04767-x. [PMID: 39786584 DOI: 10.1007/s00261-024-04767-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025]
Abstract
PURPOSE HER2 expression is crucial for the application of HER2-targeted antibody-drug conjugates. This study aims to construct a predictive model by integrating multiparametric magnetic resonance imaging (mpMRI) based multimodal radiomics and the Vesical Imaging-Reporting and Data System (VI-RADS) score for noninvasive identification of HER2 status in bladder urothelial carcinoma (BUC). METHODS A total of 197 patients were retrospectively enrolled and randomly divided into a training cohort (n = 145) and a testing cohort (n = 52). The multimodal radiomics features were derived from mpMRI, which were also utilized for VI-RADS score evaluation. LASSO algorithm and six machine learning methods were applied for radiomics feature screening and model construction. The optimal radiomics model was selected to integrate with VI-RADS score to predict HER2 status, which was determined by immunohistochemistry. The performance of predictive model was evaluated by receiver operating characteristic curve with area under the curve (AUC). RESULTS Among the enrolled patients, 110 (55.8%) patients were demonstrated with HER2-positive and 87 (44.2%) patients were HER2-negative. Eight features were selected to establish radiomics signature. The optimal radiomics signature achieved the AUC values of 0.841 (95% CI 0.779-0.904) in the training cohort and 0.794 (95%CI 0.650-0.938) in the testing cohort, respectively. The KNN model was selected to evaluate the significance of radiomics signature and VI-RADS score, which were integrated as a predictive nomogram. The AUC values for the nomogram in the training and testing cohorts were 0.889 (95%CI 0.840-0.938) and 0.826 (95%CI 0.702-0.950), respectively. CONCLUSION Our study indicated the predictive model based on the integration of mpMRI-based radiomics and VI-RADS score could accurately predict HER2 status in BUC. The model might aid clinicians in tailoring individualized therapeutic strategies.
Collapse
Affiliation(s)
- Cheng Luo
- First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shurong Li
- First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yichao Han
- First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jian Ling
- First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xuanling Wu
- First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lingwu Chen
- First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Daohu Wang
- First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Junxing Chen
- First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
2
|
Arita Y, Kwee TC, Akin O, Shigeta K, Paudyal R, Roest C, Ueda R, Lema-Dopico A, Nalavenkata S, Ruby L, Nissan N, Edo H, Yoshida S, Shukla-Dave A, Schwartz LH. Multiparametric MRI and artificial intelligence in predicting and monitoring treatment response in bladder cancer. Insights Imaging 2025; 16:7. [PMID: 39747744 PMCID: PMC11695553 DOI: 10.1186/s13244-024-01884-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
Bladder cancer is the 10th most common and 13th most deadly cancer worldwide, with urothelial carcinomas being the most common type. Distinguishing between non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC) is essential due to significant differences in management and prognosis. MRI may play an important diagnostic role in this setting. The Vesical Imaging Reporting and Data System (VI-RADS), a multiparametric MRI (mpMRI)-based consensus reporting platform, allows for standardized preoperative muscle invasion assessment in BCa with proven diagnostic accuracy. However, post-treatment assessment using VI-RADS is challenging because of anatomical changes, especially in the interpretation of the muscle layer. MRI techniques that provide tumor tissue physiological information, including diffusion-weighted (DW)- and dynamic contrast-enhanced (DCE)-MRI, combined with derived quantitative imaging biomarkers (QIBs), may potentially overcome the limitations of BCa evaluation when predominantly focusing on anatomic changes at MRI, particularly in the therapy response setting. Delta-radiomics, which encompasses the assessment of changes (Δ) in image features extracted from mpMRI data, has the potential to monitor treatment response. In comparison to the current Response Evaluation Criteria in Solid Tumors (RECIST), QIBs and mpMRI-based radiomics, in combination with artificial intelligence (AI)-based image analysis, may potentially allow for earlier identification of therapy-induced tumor changes. This review provides an update on the potential of QIBs and mpMRI-based radiomics and discusses the future applications of AI in BCa management, particularly in assessing treatment response. CRITICAL RELEVANCE STATEMENT: Incorporating mpMRI-based quantitative imaging biomarkers, radiomics, and artificial intelligence into bladder cancer management has the potential to enhance treatment response assessment and prognosis prediction. KEY POINTS: Quantitative imaging biomarkers (QIBs) from mpMRI and radiomics can outperform RECIST for bladder cancer treatments. AI improves mpMRI segmentation and enhances radiomics feature extraction effectively. Predictive models integrate imaging biomarkers and clinical data using AI tools. Multicenter studies with strict criteria validate radiomics and QIBs clinically. Consistent mpMRI and AI applications need reliable validation in clinical practice.
Collapse
Affiliation(s)
- Yuki Arita
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Thomas C Kwee
- Department of Radiology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
| | - Oguz Akin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Keisuke Shigeta
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Urology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Ramesh Paudyal
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christian Roest
- Department of Radiology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
| | - Ryo Ueda
- Office of Radiation Technology, Keio University Hospital, Shinjuku-ku, Tokyo, Japan
| | - Alfonso Lema-Dopico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sunny Nalavenkata
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lisa Ruby
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Noam Nissan
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hiromi Edo
- Department of Radiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Soichiro Yoshida
- Department of Urology, Institute of Science Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Amita Shukla-Dave
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lawrence H Schwartz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
3
|
Arita Y, Woo S, Kwee TC, Shigeta K, Ueda R, Nalavenkata S, Edo H, Miyai K, Das J, Andrieu PIC, Vargas HA. Pictorial review of multiparametric MRI in bladder urothelial carcinoma with variant histology: pearls and pitfalls. Abdom Radiol (NY) 2024; 49:2797-2811. [PMID: 38847848 DOI: 10.1007/s00261-024-04397-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 08/06/2024]
Abstract
Bladder cancer (BC), predominantly comprising urothelial carcinomas (UCs), ranks as the tenth most common cancer worldwide. UCs with variant histology (variant UC), including squamous differentiation, glandular differentiation, plasmacytoid variant, micropapillary variant, sarcomatoid variant, and nested variant, accounting for 5-10% of cases, exhibit more aggressive and advanced tumor characteristics compared to pure UC. The Vesical Imaging-Reporting and Data System (VI-RADS), established in 2018, provides guidelines for the preoperative evaluation of muscle-invasive bladder cancer (MIBC) using multiparametric magnetic resonance imaging (mpMRI). This technique integrates T2-weighted imaging (T2WI), dynamic contrast-enhanced (DCE)-MRI, and diffusion-weighted imaging (DWI) to distinguish MIBC from non-muscle-invasive bladder cancer (NMIBC). VI-RADS has demonstrated high diagnostic performance in differentiating these two categories for pure UC. However, its accuracy in detecting muscle invasion in variant UCs is currently under investigation. These variant UCs are associated with a higher likelihood of disease recurrence and require precise preoperative assessment and immediate surgical intervention. This review highlights the potential value of mpMRI for different variant UCs and explores the clinical implications and prospects of VI-RADS in managing these patients, emphasizing the need for careful interpretation of mpMRI examinations including DCE-MRI, particularly given the heterogeneity and aggressive nature of variant UCs. Additionally, the review addresses the fundamental MRI reading procedures, discusses potential causes of diagnostic errors, and considers future directions in the use of artificial intelligence and radiomics to further optimize the bladder MRI protocol.
Collapse
Affiliation(s)
- Yuki Arita
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Sungmin Woo
- Department of Radiology, NYU Langone Health, New York, USA
| | - Thomas C Kwee
- Department of Radiology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, Netherlands
| | - Keisuke Shigeta
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Ryo Ueda
- Office of Radiation Technology, Keio University Hospital, Tokyo, Japan
| | - Sunny Nalavenkata
- Department of Urology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Hiromi Edo
- Department of Radiology, National Defense Medical Collage, Saitama, Japan
| | - Kosuke Miyai
- Department of Pathology and Laboratory Medicine, National Defense Medical College, Saitama, Japan
| | - Jeeban Das
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | | | | |
Collapse
|
4
|
He C, Xu H, Yuan E, Ye L, Chen Y, Yao J, Song B. The accuracy and quality of image-based artificial intelligence for muscle-invasive bladder cancer prediction. Insights Imaging 2024; 15:185. [PMID: 39090234 PMCID: PMC11294512 DOI: 10.1186/s13244-024-01780-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024] Open
Abstract
PURPOSE To evaluate the diagnostic performance of image-based artificial intelligence (AI) studies in predicting muscle-invasive bladder cancer (MIBC). (2) To assess the reporting quality and methodological quality of these studies by Checklist for Artificial Intelligence in Medical Imaging (CLAIM), Radiomics Quality Score (RQS), and Prediction model Risk of Bias Assessment Tool (PROBAST). MATERIALS AND METHODS We searched Medline, Embase, Web of Science, and The Cochrane Library databases up to October 30, 2023. The eligible studies were evaluated using CLAIM, RQS, and PROBAST. Pooled sensitivity, specificity, and the diagnostic performances of these models for MIBC were also calculated. RESULTS Twenty-one studies containing 4256 patients were included, of which 17 studies were employed for the quantitative statistical analysis. The CLAIM study adherence rate ranged from 52.5% to 75%, with a median of 64.1%. The RQS points of each study ranged from 2.78% to 50% points, with a median of 30.56% points. All models were rated as high overall ROB. The pooled area under the curve was 0.85 (95% confidence interval (CI) 0.81-0.88) for computed tomography, 0.92 (95% CI 0.89-0.94) for MRI, 0.89 (95% CI 0.86-0.92) for radiomics and 0.91 (95% CI 0.88-0.93) for deep learning, respectively. CONCLUSION Although AI-powered muscle-invasive bladder cancer-predictive models showed promising performance in the meta-analysis, the reporting quality and the methodological quality were generally low, with a high risk of bias. CRITICAL RELEVANCE STATEMENT Artificial intelligence might improve the management of patients with bladder cancer. Multiple models for muscle-invasive bladder cancer prediction were developed. Quality assessment is needed to promote clinical application. KEY POINTS Image-based artificial intelligence models could aid in the identification of muscle-invasive bladder cancer. Current studies had low reporting quality, low methodological quality, and a high risk of bias. Future studies could focus on larger sample sizes and more transparent reporting of pathological evaluation, model explanation, and failure and sensitivity analyses.
Collapse
Affiliation(s)
- Chunlei He
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Radiology, Sanya People's Hospital, Sanya, Hainan, 572000, China
| | - Hui Xu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Enyu Yuan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Ye
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuntian Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jin Yao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Radiology, Sanya People's Hospital, Sanya, Hainan, 572000, China.
| |
Collapse
|
5
|
He K, Meng X, Wang Y, Feng C, Liu Z, Li Z, Niu Y. Progress of Multiparameter Magnetic Resonance Imaging in Bladder Cancer: A Comprehensive Literature Review. Diagnostics (Basel) 2024; 14:442. [PMID: 38396481 PMCID: PMC10888296 DOI: 10.3390/diagnostics14040442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Magnetic resonance imaging (MRI) has been proven to be an indispensable imaging method in bladder cancer, and it can accurately identify muscular invasion of bladder cancer. Multiparameter MRI is a promising tool widely used for preoperative staging evaluation of bladder cancer. Vesical Imaging-Reporting and Data System (VI-RADS) scoring has proven to be a reliable tool for local staging of bladder cancer with high accuracy in preoperative staging, but VI-RADS still faces challenges and needs further improvement. Artificial intelligence (AI) holds great promise in improving the accuracy of diagnosis and predicting the prognosis of bladder cancer. Automated machine learning techniques based on radiomics features derived from MRI have been utilized in bladder cancer diagnosis and have demonstrated promising potential for practical implementation. Future work should focus on conducting more prospective, multicenter studies to validate the additional value of quantitative studies and optimize prediction models by combining other biomarkers, such as urine and serum biomarkers. This review assesses the value of multiparameter MRI in the accurate evaluation of muscular invasion of bladder cancer, as well as the current status and progress of its application in the evaluation of efficacy and prognosis.
Collapse
Affiliation(s)
- Kangwen He
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China (X.M.); (Z.L.)
| | - Xiaoyan Meng
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China (X.M.); (Z.L.)
| | - Yanchun Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China (X.M.); (Z.L.)
| | - Cui Feng
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China (X.M.); (Z.L.)
| | - Zheng Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhen Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China (X.M.); (Z.L.)
| | - Yonghua Niu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
6
|
Akin O, Lema-Dopico A, Paudyal R, Konar AS, Chenevert TL, Malyarenko D, Hadjiiski L, Al-Ahmadie H, Goh AC, Bochner B, Rosenberg J, Schwartz LH, Shukla-Dave A. Multiparametric MRI in Era of Artificial Intelligence for Bladder Cancer Therapies. Cancers (Basel) 2023; 15:5468. [PMID: 38001728 PMCID: PMC10670574 DOI: 10.3390/cancers15225468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
This review focuses on the principles, applications, and performance of mpMRI for bladder imaging. Quantitative imaging biomarkers (QIBs) derived from mpMRI are increasingly used in oncological applications, including tumor staging, prognosis, and assessment of treatment response. To standardize mpMRI acquisition and interpretation, an expert panel developed the Vesical Imaging-Reporting and Data System (VI-RADS). Many studies confirm the standardization and high degree of inter-reader agreement to discriminate muscle invasiveness in bladder cancer, supporting VI-RADS implementation in routine clinical practice. The standard MRI sequences for VI-RADS scoring are anatomical imaging, including T2w images, and physiological imaging with diffusion-weighted MRI (DW-MRI) and dynamic contrast-enhanced MRI (DCE-MRI). Physiological QIBs derived from analysis of DW- and DCE-MRI data and radiomic image features extracted from mpMRI images play an important role in bladder cancer. The current development of AI tools for analyzing mpMRI data and their potential impact on bladder imaging are surveyed. AI architectures are often implemented based on convolutional neural networks (CNNs), focusing on narrow/specific tasks. The application of AI can substantially impact bladder imaging clinical workflows; for example, manual tumor segmentation, which demands high time commitment and has inter-reader variability, can be replaced by an autosegmentation tool. The use of mpMRI and AI is projected to drive the field toward the personalized management of bladder cancer patients.
Collapse
Affiliation(s)
- Oguz Akin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alfonso Lema-Dopico
- Department of Medical Physics, Memorial Sloan Kettering Cancer, New York, NY 10065, USA
| | - Ramesh Paudyal
- Department of Medical Physics, Memorial Sloan Kettering Cancer, New York, NY 10065, USA
| | | | | | - Dariya Malyarenko
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lubomir Hadjiiski
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hikmat Al-Ahmadie
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alvin C. Goh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Bernard Bochner
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jonathan Rosenberg
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lawrence H. Schwartz
- Department of Medical Physics, Memorial Sloan Kettering Cancer, New York, NY 10065, USA
| | - Amita Shukla-Dave
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medical Physics, Memorial Sloan Kettering Cancer, New York, NY 10065, USA
| |
Collapse
|