1
|
Barbosa JMG, Shokry E, Caetano David L, Pereira NZ, da Silva AR, de Oliveira VF, Fioravanti MCS, da Cunha PHJ, de Oliveira AE, Antoniosi Filho NR. Cancer evaluation in dogs using cerumen as a source for volatile biomarker prospection. Mol Omics 2024; 20:27-36. [PMID: 37751172 DOI: 10.1039/d3mo00147d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Cancer is one of the deadliest diseases in humans and dogs. Nevertheless, most tumor types spread faster in canines, and early cancer detection methods are necessary to enhance animal survival. Here, cerumen (earwax) was tested as a source of potential biomarkers for cancer evaluation in dogs. Earwax samples from dogs were collected from tumor-bearing and clinically healthy dogs, followed by Headspace/Gas Chromatography-Mass Spectrometry (HS/GC-MS) analyses and multivariate statistical workflow. An evolutionary-based multivariate algorithm selected 18 out of 128 volatile metabolites as a potential cancer biomarker panel in dogs. The candidate biomarkers showed a full discrimination pattern between tumor-bearing dogs and cancer-free canines with high accuracy in the test dataset: an accuracy of 95.0% (75.1-99.9), and sensitivity and specificity of 100.0% and 92.9%, respectively. In summary, this work raises a new perspective on cancer diagnosis in dogs, being carried out painlessly and non-invasive, facilitating sample collection and periodic application in a veterinary routine.
Collapse
Affiliation(s)
- João Marcos G Barbosa
- Laboratório de Métodos de Extração e Separação, Instituto de Química, Universidade Federal de Goiás (UFG), Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil.
| | - Engy Shokry
- Laboratório de Métodos de Extração e Separação, Instituto de Química, Universidade Federal de Goiás (UFG), Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil.
| | - Lurian Caetano David
- Laboratório de Métodos de Extração e Separação, Instituto de Química, Universidade Federal de Goiás (UFG), Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil.
| | - Naiara Z Pereira
- Laboratório de Métodos de Extração e Separação, Instituto de Química, Universidade Federal de Goiás (UFG), Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil.
| | - Adriana R da Silva
- Hospital Veterinário - Escola de Veterinária e Zootecnia da UFG, Rodovia Goiânia - Nova Veneza, km 8 Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil
| | - Vilma F de Oliveira
- Hospital Veterinário - Escola de Veterinária e Zootecnia da UFG, Rodovia Goiânia - Nova Veneza, km 8 Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil
| | - Maria Clorinda S Fioravanti
- Hospital Veterinário - Escola de Veterinária e Zootecnia da UFG, Rodovia Goiânia - Nova Veneza, km 8 Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil
| | - Paulo H Jorge da Cunha
- Hospital Veterinário - Escola de Veterinária e Zootecnia da UFG, Rodovia Goiânia - Nova Veneza, km 8 Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil
| | - Anselmo E de Oliveira
- Laboratório de Química Teórica e Computacional, Instituto de Química, Universidade Federal de Goiás (UFG), Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil
| | - Nelson Roberto Antoniosi Filho
- Laboratório de Métodos de Extração e Separação, Instituto de Química, Universidade Federal de Goiás (UFG), Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil.
| |
Collapse
|
2
|
Meehan-Atrash J, Luo W, McWhirter KJ, Dennis DG, Sarlah D, Jensen RP, Afreh I, Jiang J, Barsanti KC, Ortiz A, Strongin RM. The influence of terpenes on the release of volatile organic compounds and active ingredients to cannabis vaping aerosols. RSC Adv 2021; 11:11714-11723. [PMID: 35423635 PMCID: PMC8695911 DOI: 10.1039/d1ra00934f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Cannabinoid and VOC emissions from vaping cannabis concentrates vary depending on terpene content, power level and consumption method.
Collapse
Affiliation(s)
| | - Wentai Luo
- Department of Chemistry
- Portland State University
- Portland
- USA
- Department of Civil and Environmental Engineering
| | - Kevin J. McWhirter
- Department of Civil and Environmental Engineering
- Portland State University
- Portland
- USA
| | - David G. Dennis
- Roger Adams Laboratory
- Department of Chemistry
- University of Illinois
- Urbana
- USA
| | - David Sarlah
- Roger Adams Laboratory
- Department of Chemistry
- University of Illinois
- Urbana
- USA
| | | | - Isaac Afreh
- Chemical and Environmental Engineering
- Center for Environmental Research and Technology
- University of California-Riverside
- Riverside
- USA
| | - Jia Jiang
- Chemical and Environmental Engineering
- Center for Environmental Research and Technology
- University of California-Riverside
- Riverside
- USA
| | - Kelley C. Barsanti
- Chemical and Environmental Engineering
- Center for Environmental Research and Technology
- University of California-Riverside
- Riverside
- USA
| | - Alisha Ortiz
- Department of Chemistry
- Portland State University
- Portland
- USA
| | | |
Collapse
|
3
|
Jalal AH, Alam F, Roychoudhury S, Umasankar Y, Pala N, Bhansali S. Prospects and Challenges of Volatile Organic Compound Sensors in Human Healthcare. ACS Sens 2018; 3:1246-1263. [PMID: 29879839 DOI: 10.1021/acssensors.8b00400] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The chemical signatures of volatile organic compounds (VOCs) in humans can be utilized for point-of-care (POC) diagnosis. Apart from toxic exposure studies, VOCs generated in humans can provide insights into one's healthy and diseased metabolic states, acting as a biomarker for identifying numerous diseases noninvasively. VOC sensors and the technology of e-nose have received significant attention for continuous and selective monitoring of various physiological and pathophysiological conditions of an individual. Noninvasive detection of VOCs is achieved from biomatrices of breath, sweat and saliva. Among these, detection from sweat and saliva can be continuous in real-time. The sensing approaches include optical, chemiresistive and electrochemical techniques. This article provides an overview of such techniques. These, however, have limitations of reliability, precision, selectivity, and stability in continuous monitoring. Such limitations are due to lack of sensor stability and complexity of samples in a multivariate environment, which can lead to false readings. To overcome selectivity barriers, sensor arrays enabling multimodal sensing, have been used with pattern recognition techniques. Stability and precision issues have been addressed through advancements in nanotechnology. The use of various forms of nanomaterial not only enhance sensing performance, but also plays a major role in detection on a miniaturized scale. The rapid growth in medical Internet of Things (IoT) and artificial intelligence paves a pathway for improvements in human theranostics.
Collapse
Affiliation(s)
- Ahmed H. Jalal
- Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174, United States
| | - Fahmida Alam
- Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174, United States
| | - Sohini Roychoudhury
- Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174, United States
| | - Yogeswaran Umasankar
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Nezih Pala
- Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174, United States
| | - Shekhar Bhansali
- Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174, United States
| |
Collapse
|
4
|
DeGreeff LE, Cerreta M, Rispoli M. Feasibility of Canine Detection of Mass Storage Devices: A Study of Volatile Organic Compounds Emanating from Electronic Devices Using Solid Phase Microextraction. J Forensic Sci 2017; 62:1613-1616. [DOI: 10.1111/1556-4029.13472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/29/2016] [Accepted: 01/24/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Lauryn E. DeGreeff
- U.S. Naval Research Laboratory; 4555 Overlook Avenue SW Washington DC 20375
| | - Michelle Cerreta
- Former National Research Council post-doctoral fellow at U.S. Naval Research Laboratory; 4555 Overlook Avenue SW Washington DC 20375
| | - Mark Rispoli
- Makor K-9 Training Center; 3078 Encanto Drive Napa CA 94558
| |
Collapse
|
5
|
Nozoe T, Goda S, Selyanchyn R, Wang T, Nakazawa K, Hirano T, Matsui H, Lee SW. In vitro detection of small molecule metabolites excreted from cancer cells using a Tenax TA thin-film microextraction device. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 991:99-107. [PMID: 25932789 DOI: 10.1016/j.jchromb.2015.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 03/25/2015] [Accepted: 04/09/2015] [Indexed: 12/23/2022]
Abstract
We developed a new device for the in vitro extraction of small molecule metabolites excreted from cancer cells. The extraction device, which was biocompatible and incubated with cancer cells, consists of a thin Tenax TA film deposited on the surface of a cylindrical aluminum rod. The Tenax TA solid phase was utilized for the direct extraction and preconcentration of the small molecule metabolites from a cell culture sample. The device fabrication and the metabolite extraction were optimized, tested, and validated using HeLa cell cultures. Comparison of metabolic profiles with the control measurement from the culture medium enabled detection of metabolites that were consumed or produced by the cell culture. Tentative identification and semi-quantitative investigation of the excreted metabolites were performed by GC-MS analysis. The proposed approach can be a valuable tool for the characterization of low-volatile cancer cell metabolites that are not covered by use of conventional methods based on headspace solid phase microextraction.
Collapse
Affiliation(s)
- Takuma Nozoe
- Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu 808-0135, Japan
| | - Shigemi Goda
- Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu 808-0135, Japan
| | - Roman Selyanchyn
- Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu 808-0135, Japan; WPI International Institute for Carbon-Neutral Energy Research (WPI-I(2) CNER), Kyushu University, Fukuoka 819-0395, Japan
| | - Tao Wang
- Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu 808-0135, Japan
| | - Kohji Nakazawa
- Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu 808-0135, Japan
| | - Takeshi Hirano
- Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu 808-0135, Japan
| | | | - Seung-Woo Lee
- Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu 808-0135, Japan.
| |
Collapse
|