1
|
Moses AS, Korzun T, Mamnoon B, Baldwin MK, Myatt L, Taratula O, Taratula OR. Nanomedicines for Improved Management of Ectopic Pregnancy: A Narrative Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2301873. [PMID: 37471169 PMCID: PMC10837845 DOI: 10.1002/smll.202301873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/04/2023] [Indexed: 07/22/2023]
Abstract
Ectopic pregnancy (EP) - the implantation of an embryo outside of the endometrial cavity, often in the fallopian tube - is a significant contributor to maternal morbidity and leading cause of maternal death due to hemorrhage in first trimester. Current diagnostic modalities including human chorionic gonadotropin (hCG) quantification and ultrasonography are effective, but may still misdiagnose EP at initial examination in many cases. Depending on the patient's hemodynamic stability and gestational duration of the pregnancy, as assessed by history, hCG measurement and ultrasonography, management strategies may include expectant management, chemotherapeutic treatment using methotrexate (MTX), or surgical intervention. While these strategies are largely successful, expectant management may result in tubal rupture if the pregnancy does not resolve spontaneously; MTX administration is not always successful and may induce significant side effects; and surgical intervention may result in loss of the already-damaged fallopian tube, further hampering the patient's subsequent attempts to conceive. Nanomaterial-based technologies offer the potential to enhance delivery of diagnostic imaging contrast and therapeutic agents to more effectively and safely manage EP. The purpose of this narrative review is to summarize the current state of nanomedicine technology dedicated to its potential to improve both the diagnosis and treatment of EP.
Collapse
Affiliation(s)
- Abraham S Moses
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Tetiana Korzun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Babak Mamnoon
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Maureen K Baldwin
- Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Olena R Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| |
Collapse
|
2
|
Nykel A, Woźniak R, Gach A. Clinical Validation of Novel Chip-Based Digital PCR Platform for Fetal Aneuploidies Screening. Diagnostics (Basel) 2021; 11:diagnostics11071131. [PMID: 34206187 PMCID: PMC8306616 DOI: 10.3390/diagnostics11071131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022] Open
Abstract
Fetal aneuploidy is routinely diagnosed by karyotyping. The development of techniques for rapid aneuploidy detection based on the amplification reaction allows cheaper and rapid diagnosis. However, the currently available solutions have limitations. We tested a novel approach as a diagnostic tool in clinical practice. The objective of this study was to provide a clinical performance of the sensitivity and specificity of a novel chip-based digital PCR approach for fetal aneuploidy screening. The study was conducted in 505 pregnant women with increased risk for fetal aneuploidy undergoing invasive prenatal diagnostics. DNA extracted from amniotic fluid or CVS was analyzed for the copy number of chromosomes 13, 18, 21, X, and Y using a new chip-based solution. Performance was assessed by comparing results with findings from karyotyping. Aneuploidy was confirmed in 65/505 cases positive for trisomy 21, 30/505 cases positive for trisomy 18, 14/505 cases positive for trisomy 13 and 21/505 with SCAs. Moreover, 2 cases with triploidy and 2 cases with confirmed mosaicisms of 21 and X chromosomes were detected. Clinical sensitivity and specificity within this study was determined at 100% for T21 (95% CI, 99.26–100%), T18 (95% CI, 99.26–100%), and T13 (95% CI, 99.26–100%). Chip-based digital PCR provides equally high sensitivity and specificity in rapid aneuploidy screening and can be implemented into routine prenatal diagnostics.
Collapse
Affiliation(s)
- Anna Nykel
- Department of Genetics, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland
- Correspondence: (A.N.); (A.G.); Tel.: +48-42271-1271 (A.G.)
| | - Rafał Woźniak
- Chair of Statistics and Econometrics, Faculty of Economic Sciences, University of Warsaw, 00-241 Warsaw, Poland;
| | - Agnieszka Gach
- Department of Genetics, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland
- Correspondence: (A.N.); (A.G.); Tel.: +48-42271-1271 (A.G.)
| |
Collapse
|
3
|
Chiu NF, Tai MJ, Nurrohman DT, Lin TL, Wang YH, Chen CY. Immunoassay-Amplified Responses Using a Functionalized MoS 2-Based SPR Biosensor to Detect PAPP-A2 in Maternal Serum Samples to Screen for Fetal Down's Syndrome. Int J Nanomedicine 2021; 16:2715-2733. [PMID: 33859474 PMCID: PMC8043798 DOI: 10.2147/ijn.s296406] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/15/2021] [Indexed: 12/31/2022] Open
Abstract
Background Due to educational, social and economic reasons, more and more women are delaying childbirth. However, advanced maternal age is associated with several adverse pregnancy outcomes, and in particular a high risk of Down’s syndrome (DS). Hence, it is increasingly important to be able to detect fetal Down’s syndrome (FDS). Methods We developed an effective, highly sensitive, surface plasmon resonance (SPR) biosensor with biochemically amplified responses using carboxyl-molybdenum disulfide (MoS2) film. The use of carboxylic acid as a surface modifier of MoS2 promoted dispersion and formed specific three-dimensional coordination sites. The carboxylic acid immobilized unmodified antibodies in a way that enhanced the bioaffinity of MoS2 and preserved biorecognition properties of the SPR sensor surface. Complete antigen pregnancy-associated plasma protein-A2 (PAPP-A2) conjugated with the carboxyl-MoS2-modified gold chip to amplify the signal and improve detection sensitivity. This heterostructure interface had a high work function, and thus improved the efficiency of the electric field energy of the surface plasmon. These results provide evidence that the interface electric field improved performance of the SPR biosensor. Results The carboxyl-MoS2-based SPR biosensor was used successfully to evaluate PAPP-A2 level for fetal Down’s syndrome screening in maternal serum samples. The detection limit was 0.05 pg/mL, and the linear working range was 0.1 to 1100 pg/mL. The women with an SPR angle >46.57 m° were more closely associated with fetal Down’s syndrome. Once optimized for serum Down’s syndrome screening, an average recovery of 95.2% and relative standard deviation of 8.5% were obtained. Our findings suggest that carboxyl-MoS2-based SPR technology may have advantages over conventional ELISA in certain situations. Conclusion Carboxyl-MoS2-based SPR biosensors can be used as a new diagnostic technology to respond to the increasing need for fetal Down’s syndrome screening in maternal serum samples. Our results demonstrated that the carboxyl-MoS2-based SPR biosensor was capable of determining PAPP-A2 levels with acceptable accuracy and recovery. We hope that this technology will be investigated in diverse clinical trials and in real case applications for screening and early diagnosis in the future.
Collapse
Affiliation(s)
- Nan-Fu Chiu
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei City, Taiwan.,Department of Life Science, National Taiwan Normal University, Taipei City, Taiwan
| | - Ming-Jung Tai
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei City, Taiwan
| | - Devi Taufiq Nurrohman
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei City, Taiwan.,Department of Electronics Engineering, State Polytechnic of Cilacap, Cilacap, Indonesia
| | - Ting-Li Lin
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei City, Taiwan
| | - Ying-Hao Wang
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei City, Taiwan
| | - Chen-Yu Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei City, Taiwan.,Department of Medicine, Mackay Medical College, Taipei City, Taiwan
| |
Collapse
|
4
|
Korostin DO, Plakhina DA, Belova VA. Noninvasive prenatal testing: the aspects of its introduction into clinical practice. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2019. [DOI: 10.24075/brsmu.2019.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The last couple of years have witnessed the rapid development of prenatal molecular-based screening for fetal aneuploidies that utilizes the analysis of cell-free DNA circulating in the bloodstream of a pregnant woman. The present review looks at the potential and limitations of such testing and the possible causes of false-positive and false-negative results. The review also describes the underlying principles of data acquisition and analysis the testing involves. In addition, we talk about the opinions held by the expert community and some aspects of legislation on the use of noninvasive prenatal testing (NIPT) in clinical practice in the countries where NIPT is much more widespread than in Russia.
Collapse
Affiliation(s)
- D. O. Korostin
- Pirogov Russian National Research Medical University, Moscow, Russia; Genotek Ltd., Moscow, Russia
| | | | - V. A. Belova
- Pirogov Russian National Research Medical University, Moscow, Russia; Genotek Ltd., Moscow, Russia
| |
Collapse
|
5
|
Sensitivity of Nasal Bone as Aneuploidy Marker—First Trimester versus Second Trimester Assessment. JOURNAL OF FETAL MEDICINE 2017. [DOI: 10.1007/s40556-017-0128-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Sillence KA, Roberts LA, Hollands HJ, Thompson HP, Kiernan M, Madgett TE, Welch CR, Avent ND. Fetal Sex and RHD Genotyping with Digital PCR Demonstrates Greater Sensitivity than Real-time PCR. Clin Chem 2015; 61:1399-407. [PMID: 26354802 DOI: 10.1373/clinchem.2015.239137] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 08/24/2015] [Indexed: 11/06/2022]
Abstract
BACKGROUND Noninvasive genotyping of fetal RHD (Rh blood group, D antigen) can prevent the unnecessary administration of prophylactic anti-D to women carrying RHD-negative fetuses. We evaluated laboratory methods for such genotyping. METHODS Blood samples were collected in EDTA tubes and Streck® Cell-Free DNA™ blood collection tubes (Streck BCTs) from RHD-negative women (n = 46). Using Y-specific and RHD-specific targets, we investigated variation in the cell-free fetal DNA (cffDNA) fraction and determined the sensitivity achieved for optimal and suboptimal samples with a novel Droplet Digital™ PCR (ddPCR) platform compared with real-time quantitative PCR (qPCR). RESULTS The cffDNA fraction was significantly larger for samples collected in Streck BCTs compared with samples collected in EDTA tubes (P < 0.001). In samples expressing optimal cffDNA fractions (≥4%), both qPCR and digital PCR (dPCR) showed 100% sensitivity for the TSPY1 (testis-specific protein, Y-linked 1) and RHD7 (RHD exon 7) assays. Although dPCR also had 100% sensitivity for RHD5 (RHD exon 5), qPCR had reduced sensitivity (83%) for this target. For samples expressing suboptimal cffDNA fractions (<2%), dPCR achieved 100% sensitivity for all assays, whereas qPCR achieved 100% sensitivity only for the TSPY1 (multicopy target) assay. CONCLUSIONS qPCR was not found to be an effective tool for RHD genotyping in suboptimal samples (<2% cffDNA). However, when testing the same suboptimal samples on the same day by dPCR, 100% sensitivity was achieved for both fetal sex determination and RHD genotyping. Use of dPCR for identification of fetal specific markers can reduce the occurrence of false-negative and inconclusive results, particularly when samples express high levels of background maternal cell-free DNA.
Collapse
Affiliation(s)
- Kelly A Sillence
- School of Biomedical and Healthcare Sciences, Plymouth University, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | - Llinos A Roberts
- Department of Fetal Medicine, Plymouth Hospitals National Health Service Trust, Plymouth, UK
| | - Heidi J Hollands
- Department of Fetal Medicine, Plymouth Hospitals National Health Service Trust, Plymouth, UK
| | - Hannah P Thompson
- School of Biomedical and Healthcare Sciences, Plymouth University, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | - Michele Kiernan
- School of Biomedical and Healthcare Sciences, Plymouth University, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | - Tracey E Madgett
- School of Biomedical and Healthcare Sciences, Plymouth University, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | - C Ross Welch
- Department of Fetal Medicine, Plymouth Hospitals National Health Service Trust, Plymouth, UK
| | - Neil D Avent
- School of Biomedical and Healthcare Sciences, Plymouth University, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK;
| |
Collapse
|
7
|
Iles RK, Shahpari ME, Cuckle H, Butler SA. Direct and rapid mass spectral fingerprinting of maternal urine for the detection of Down syndrome pregnancy. Clin Proteomics 2015; 12:9. [PMID: 25878568 PMCID: PMC4389308 DOI: 10.1186/s12014-015-9082-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 03/09/2015] [Indexed: 01/31/2023] Open
Abstract
Background The established methods of antenatal screening for Down syndrome are based on immunoassay for a panel of maternal serum biomarkers together with ultrasound measures. Recently, genetic analysis of maternal plasma cell free (cf) DNA has begun to be used but has a number of limitations including excessive turn-around time and cost. We aimed to develop an alternative method based on urinalysis that is simple, affordable and accurate. Method 101 maternal urine samples sampled at 12–17 weeks gestation were taken from an archival collection of 2567 spot urines collected from women attending a prenatal screening clinic. 18 pregnancies in this set subsequently proved to be Down pregnancies. Samples were either neat urine or diluted between 10 to 1000 fold in dH2O and subjected to matrix assisted laser desorption ionization (MALDI), time of flight (ToF) mass spectrometry (MS). Data profiles were examined in the region 6,000 to 14,000 m/z. Spectral data was normalised and quantitative characteristics of the profile were compared between Down and controls. Results In Down cases there were additional spectral profile peaks at 11,000-12,000 m/z and a corresponding reduction in intensity at 6,000-8,000 m/z. The ratio of the normalised values at these two ranges completely separated the 8 Down syndrome from the 39 controls at 12–14 weeks. Discrimination was poorer at 15–17 weeks where 3 of the 10 Down syndrome cases had values within the normal range. Conclusions Direct MALDI ToF mass spectral profiling of maternal urinary has the potential for an affordable, simple, accurate and rapid alternative to current Down syndrome screening protocols.
Collapse
Affiliation(s)
- Ray K Iles
- MAP Diagnostics Ltd, The BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire, AL7 3AX UK
| | - Maryam E Shahpari
- MAP Diagnostics Ltd, The BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire, AL7 3AX UK ; Middlesex University, Hendon, London, UK
| | | | - Stephen A Butler
- MAP Diagnostics Ltd, The BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire, AL7 3AX UK ; Middlesex University, Hendon, London, UK
| |
Collapse
|