1
|
Elbehiry A, Marzouk E, Abalkhail A, Abdelsalam MH, Mostafa MEA, Alasiri M, Ibrahem M, Ellethy AT, Almuzaini A, Aljarallah SN, Abu-Okail A, Marzook N, Alhadyan S, Edrees HM. Detection of antimicrobial resistance via state-of-the-art technologies versus conventional methods. Front Microbiol 2025; 16:1549044. [PMID: 40071214 PMCID: PMC11893576 DOI: 10.3389/fmicb.2025.1549044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Antimicrobial resistance (AMR) is recognized as one of the foremost global health challenges, complicating the treatment of infectious diseases and contributing to increased morbidity and mortality rates. Traditionally, microbiological culture and susceptibility testing methods, such as disk diffusion and minimum inhibitory concentration (MIC) assays, have been employed to identify AMR bacteria. However, these conventional techniques are often labor intensive and time consuming and lack the requisite sensitivity for the early detection of resistance. Recent advancements in molecular and genomic technologies-such as next-generation sequencing (NGS), matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), lateral flow immunoassays (LFIAs), PCR-based diagnostic methods, and CRISPR-based diagnostics-have revolutionized the diagnosis of AMR. These innovative approaches provide increased sensitivity, reduced turnaround times, and the ability to identify genetic resistance mechanisms. This review seeks to examine the advantages and disadvantages of both emerging technologies and traditional methods for detecting AMR, emphasizing the potential benefits and limitations inherent to each. By understanding the strengths and limitations of these technologies, stakeholders, including researchers, healthcare professionals, regulatory agencies, health authorities, financial managers, and patients, can make informed decisions aimed at preventing the emergence and dissemination of antibiotic-resistant strains, thereby ultimately increasing patient safety.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Eman Marzouk
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | | | - Mohamed E. A. Mostafa
- Department of Anatomy, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Mazen Alasiri
- Department of Pharmacy, Armed Forces Hospital, King Abdul Aziz Naval base in Jubail, Jubail, Saudi Arabia
| | - Mai Ibrahem
- Department of Public Health, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Abousree T. Ellethy
- Division of Biochemistry, Department of Basic Oral Sciences and Dental Education, College of Dentistry, Qassim University, Buraydah, Saudi Arabia
| | - Abdulaziz Almuzaini
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Sahar N. Aljarallah
- Department of Pharmacy sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Akram Abu-Okail
- Department of Pathology and Laboratory Diagnosis, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Naif Marzook
- Department of Emergency Medicine, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Satam Alhadyan
- Department of Environmental Health Administration, Health Services, Ministry of Defense, Riyadh, Saudi Arabia
| | - Husam M. Edrees
- Department of Physiology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
2
|
Ardila CM. Advancing healthcare through laboratory on a chip technology: Transforming microorganism identification and diagnostics. World J Clin Cases 2025; 13:97737. [PMID: 39866650 PMCID: PMC11577522 DOI: 10.12998/wjcc.v13.i3.97737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/01/2024] [Accepted: 10/22/2024] [Indexed: 11/12/2024] Open
Abstract
In a recent case report in the World Journal of Clinical Cases, emphasized the crucial role of rapidly and accurately identifying pathogens to optimize patient treatment outcomes. Laboratory-on-a-chip (LOC) technology has emerged as a transformative tool in health care, offering rapid, sensitive, and specific identification of microorganisms. This editorial provides a comprehensive overview of LOC technology, highlighting its principles, advantages, applications, challenges, and future directions. Success studies from the field have demonstrated the practical benefits of LOC devices in clinical diagnostics, epidemiology, and food safety. Comparative studies have underscored the superiority of LOC technology over traditional methods, showcasing improvements in speed, accuracy, and portability. The future integration of LOC with biosensors, artificial intelligence, and data analytics promises further innovation and expansion. This call to action emphasizes the importance of continued research, investment, and adoption to realize the full potential of LOC technology in improving healthcare outcomes worldwide.
Collapse
Affiliation(s)
- Carlos M Ardila
- Department of Basic Sciences, Biomedical Stomatology Research Group, Universidad de Antioquia U de A, Medellín 0057, Colombia
| |
Collapse
|
3
|
Ardila CM, Jiménez-Arbeláez GA, Vivares-Builes AM. Efficacy of wireless sensors in assessing occlusal and bite forces: A systematic review. J Oral Rehabil 2024; 51:1337-1347. [PMID: 38616519 DOI: 10.1111/joor.13700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND The noteworthy correlation between bite force and masticatory performance emphasizes its significance as a meaningful and objective method for assessing oral function. Furthermore, in the study of bruxism, the measurement of intraoral bite force assumes critical importance. Given the importance of assessing occlusal forces and bite force, this systematic review aims to assess the efficacy of wireless sensors in measuring these forces. METHODS The search methodology employed in this systematic review adhered to the guidelines outlined by PRISMA. The strategy involved the exploration of various databases, including PubMed/MEDLINE, SCOPUS and SCIELO. An assessment tool was employed to evaluate the bias risk and study quality. RESULTS This systematic review encompassed six prospective clinical studies involving a total of 89 participants. Wireless sensors for measuring occlusal forces and bite forces were predominantly employed in healthy adults or individuals with bruxism, along with children undergoing orthodontic treatment. All wireless sensors employed in the studies underwent validation and reproducibility assessments, affirming their reliability. The findings indicated that all wireless sensors exhibited efficacy in detecting occlusal forces and bite forces. CONCLUSION Wireless sensors offer real-time monitoring of occlusal and bite forces, aiding in understanding force distribution and identifying bruxism patterns. Despite limited studies on their application, these sensors contribute to evolving insights. Integration into clinical practice requires careful consideration of factors like calibration and patient compliance. Ongoing research is crucial to address limitations and enhance the efficacy of wireless sensors in measuring occlusal and bite forces and managing bruxism.
Collapse
Affiliation(s)
- Carlos-M Ardila
- Biomedical Stomatology Research Group, Universidad de Antioquia U de A, Medellín, Colombia
| | | | | |
Collapse
|