1
|
Tzimas K, Antoniadou M, Varzakas T, Voidarou C(C. Plant-Derived Compounds: A Promising Tool for Dental Caries Prevention. Curr Issues Mol Biol 2024; 46:5257-5290. [PMID: 38920987 PMCID: PMC11201632 DOI: 10.3390/cimb46060315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
There is a growing shift from the use of conventional pharmaceutical oral care products to the use of herbal extracts and traditional remedies in dental caries prevention. This is attributed to the potential environmental and health implications of contemporary oral products. This comprehensive review aims at the analysis of plant-derived compounds as preventive modalities in dental caries research. It focuses on data collected from 2019 until recently, trying to emphasize current trends in this topic. The research findings suggest that several plant-derived compounds, either aqueous or ethanolic, exhibit notable antibacterial effects against Streptococcus mutans and other bacteria related to dental caries, with some extracts demonstrating an efficacy comparable to that of chlorhexidine. Furthermore, in vivo studies using plant-derived compounds incorporated in food derivatives, such as lollipops, have shown promising results by significantly reducing Streptococcus mutans in high-risk caries children. In vitro studies on plant-derived compounds have revealed bactericidal and bacteriostatic activity against S. mutans, suggesting their potential use as dental caries preventive agents. Medicinal plants, plant-derived phytochemicals, essential oils, and other food compounds have exhibited promising antimicrobial activity against oral pathogens, either by their anti-adhesion activity, the inhibition of extracellular microbial enzymes, or their direct action on microbial species and acid production. However, further research is needed to assess their antimicrobial activity and to evaluate the cytotoxicity and safety profiles of these plant-derived compounds before their widespread clinical use can be recommended.
Collapse
Affiliation(s)
- Konstantinos Tzimas
- Department of Operative Dentistry, National and Kapodistrian University of Athens, 11521 Athens, Greece;
| | - Maria Antoniadou
- Department of Operative Dentistry, National and Kapodistrian University of Athens, 11521 Athens, Greece;
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece;
| | | |
Collapse
|
2
|
Kadirvelu L, Sivaramalingam SS, Jothivel D, Chithiraiselvan DD, Karaiyagowder Govindarajan D, Kandaswamy K. A review on antimicrobial strategies in mitigating biofilm-associated infections on medical implants. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100231. [PMID: 38510214 PMCID: PMC10951465 DOI: 10.1016/j.crmicr.2024.100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Biomedical implants are crucial in providing support and functionality to patients with missing or defective body parts. However, implants carry an inherent risk of bacterial infections that are biofilm-associated and lead to significant complications. These infections often result in implant failure, requiring replacement by surgical restoration. Given these complications, it is crucial to study the biofilm formation mechanism on various biomedical implants that will help prevent implant failures. Therefore, this comprehensive review explores various types of implants (e.g., dental implant, orthopedic implant, tracheal stent, breast implant, central venous catheter, cochlear implant, urinary catheter, intraocular lens, and heart valve) and medical devices (hemodialyzer and pacemaker) in use. In addition, the mechanism of biofilm formation on those implants, and their pathogenesis were discussed. Furthermore, this article critically reviews various approaches in combating implant-associated infections, with a special emphasis on novel non-antibiotic alternatives to mitigate biofilm infections.
Collapse
Affiliation(s)
- Lohita Kadirvelu
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Sowmiya Sri Sivaramalingam
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Deepsikha Jothivel
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Dhivia Dharshika Chithiraiselvan
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | | | - Kumaravel Kandaswamy
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| |
Collapse
|
3
|
Tabassum R, Kousar S, Mustafa G, Jamil A, Attique SA. In Silico Method for the Screening of Phytochemicals against Methicillin-Resistant Staphylococcus Aureus. BIOMED RESEARCH INTERNATIONAL 2023; 2023:5100400. [PMID: 37250750 PMCID: PMC10212682 DOI: 10.1155/2023/5100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has evolved resistance even against the last resort β-lactam antibiotics. This is because of the acquisition of an additional penicillin-binding protein 2a (PBP2a) which is a resistance determinant in MRSA. Currently, available PBP2a inhibitors are ineffective against life-threatening and fatal infections caused by microorganisms. Therefore, there is an urgent need to screen natural compounds that could overpass the resistance issue alone or in combination with antibacterial drugs. We studied the interactions of different phytochemicals with PBP2a so that crosslinking of peptidoglycans could be inhibited. In structure-based drug designing, in silico approach plays a key role in determining phytochemical interactions with PBP2a. In this study, a total of 284 antimicrobial phytochemicals were screened using the molecular docking approach. The binding affinity of methicillin, -11.241 kcal/mol, was used as the threshold value. The phytochemicals having binding affinities with PBP2a stronger than methicillin were identified, and the drug-likeness properties and toxicities of the screened phytochemicals were calculated. Out of the multiple phytochemicals screened, nine were found as good inhibitors to be PBP2a, among which cyanidin, tetrandrine, cyclomorusin, lipomycin, and morusin showed strong binding potential with the receptor protein. These best-selected phytochemicals were also docked to the allosteric site of PBP2a, and most of the compounds revealed strong interactions with the allosteric site. These compounds were safe to be used as drugs because they did not show any toxicity and had good bioactivity scores. Cyanidin had the highest binding affinity (S-score of -16.061 kcal/mol) with PBP2a and with high gastrointestinal (GI) absorption. Our findings suggest that cyanidin can be used as a drug against MRSA infection either in purified form or that its structure can lead to the development of more potent anti-MRSA medicines. However, experimental studies are required to evaluate the inhibitory potential of these phytochemicals against MRSA.
Collapse
Affiliation(s)
- Riaz Tabassum
- Department of Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan
| | - Sumaira Kousar
- Department of Biochemistry, Government College Women University, Faisalabad, Pakistan
| | - Ghulam Mustafa
- Department of Biochemistry, Government College University, Faisalabad 38000, Pakistan
| | - Amer Jamil
- Department of Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan
| | - Syed Awais Attique
- School of Interdisciplinary Engineering & Science (SINES), National University of Sciences & Technology (NUST), Islamabad, Pakistan
- Agency for Science, Technology and Research (ASTAR), Bioinformatics Institute, 30 Biopolis Street, Matrix, Singapore 138671, Singapore
| |
Collapse
|
4
|
Haque MM, Yerex K, Kelekis-Cholakis A, Duan K. Advances in novel therapeutic approaches for periodontal diseases. BMC Oral Health 2022; 22:492. [PMCID: PMC9664646 DOI: 10.1186/s12903-022-02530-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractPeriodontal diseases are pathological processes resulting from infections and inflammation affecting the periodontium or the tissue surrounding and supporting the teeth. Pathogenic bacteria living in complex biofilms initiate and perpetuate this disease in susceptible hosts. In some cases, broad-spectrum antibiotic therapy has been a treatment of choice to control bacterial infection. However, increasing antibiotic resistance among periodontal pathogens has become a significant challenge when treating periodontal diseases. Thanks to the improved understanding of the pathogenesis of periodontal disease, which involves the host immune response, and the importance of the human microbiome, the primary goal of periodontal therapy has shifted, in recent years, to the restoration of homeostasis in oral microbiota and its harmonious balance with the host periodontal tissues. This shift in therapeutic goals and the drug resistance challenge call for alternative approaches to antibiotic therapy that indiscriminately eliminate harmful or beneficial bacteria. In this review, we summarize the recent advancement of alternative methods and new compounds that offer promising potential for the treatment and prevention of periodontal disease. Agents that target biofilm formation, bacterial quorum-sensing systems and other virulence factors have been reviewed. New and exciting microbiome approaches, such as oral microbiota replacement therapy and probiotic therapy for periodontal disease, are also discussed.
Collapse
|
5
|
Hosseini B, Behbahani M, Dini G, Mohabatkar H, Keyhanfar M. Investigating the anti-streptococcal biofilm effect of ssDNA aptamer-silver nanoparticles complex on a titanium-based substrate. RSC Adv 2022; 12:24876-24886. [PMID: 36276899 PMCID: PMC9475424 DOI: 10.1039/d2ra04112j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022] Open
Abstract
Streptococcus mutans is a commensal and opportunistic pathogen that causes several diseases by forming a biofilm in humans and animals in many areas such as nasopharyngeal, cardiac valves, lungs, and oral cavity. Biofilms are very important in prosthetic infections associated with medical implants. The use of nanoparticles is one of the evolving fields in biofilm targeting. Silver nanoparticles can be used for biofilm targeting due to their inherent antimicrobial properties. Hybridization of nanoparticles with small molecules increases their biological properties and makes them multifunctional. The present investigation aimed to design an appropriate silver nanoparticles-aptamer complex that binds to the surface receptors of streptococcal strains. For this reason, silver nanoparticles with particle sizes in a range of 50 to 70 nm were synthesized and connected to a designed aptamer with a streptavidin-biotin linker. Then, the effect of the complex was investigated on the S. mutans biofilm formed on the surface of a medical-grade titanium substrate. The silver nanoparticles-aptamer complex at a concentration of 100 μg mL-1 after 48 h inhibited 43% of the biofilm formation and degraded 63% of the formed biofilm. Also, the cell availability reached 96% and the complex was stable in cell medium culture for 360 min. It was concluded that this complex could be a good candidate for removing the formed biofilms on the surface of titanium implants.
Collapse
Affiliation(s)
- Barumand Hosseini
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan Isfahan 81746-73441 Iran +98-31-37932342 +98-31-37934327
| | - Mandana Behbahani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan Isfahan 81746-73441 Iran +98-31-37932342 +98-31-37934327
| | - Ghasem Dini
- Department of Nanotechnology, Faculty of Chemistry, University of Isfahan Isfahan 81746-73441 Iran
| | - Hassan Mohabatkar
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan Isfahan 81746-73441 Iran +98-31-37932342 +98-31-37934327
| | - Mehrnaz Keyhanfar
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan Isfahan 81746-73441 Iran +98-31-37932342 +98-31-37934327
| |
Collapse
|
6
|
Aragão MGB, Aires CP, Corona SAM. Effects of the green tea catechin epigallocatechin-3-gallate on S treptococcus mutans planktonic cultures and biofilms: systematic literature review of in vitro studies. BIOFOULING 2022; 38:687-695. [PMID: 36017657 DOI: 10.1080/08927014.2022.2116320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
This study aimed at performing a systematic review of the literature on the effects of epigallocatechin-3-gallate (EGCG) on Streptococcus mutans planktonic cultures and biofilms. The selected references demonstrated that EGCG suppresses S. mutans acid production by inhibiting the activity of enzymes such as lactate dehydrogenase and FIF0-ATPase. Regarding virulence factors, one study reported a reduction in soluble and insoluble polysaccharide synthesis, another demonstrated that EGCG inhibited GTase activity, and another showed effects of EGCG on the expression of gtf B, C, and D. The effects of EGCG on S. mutans biofilms were reported only by 2 of the selected studies. Moreover, high variability in effective concentrations and microbial assessment methods were observed. The literature suggests that EGCG has effects against S. mutans planktonic cells viability and virulence factors. However, the literature lacks studies with appropriate biofilm models to evaluate the precise effectiveness of EGCG against S. mutans biofilms.
Collapse
Affiliation(s)
- Maria Gerusa Brito Aragão
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Carolina Patrícia Aires
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
7
|
Yang S, Lyu X, Zhang J, Shui Y, Yang R, Xu X. The Application of Small Molecules to the Control of Typical Species Associated With Oral Infectious Diseases. Front Cell Infect Microbiol 2022; 12:816386. [PMID: 35265531 PMCID: PMC8899129 DOI: 10.3389/fcimb.2022.816386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
Oral microbial dysbiosis is the major causative factor for common oral infectious diseases including dental caries and periodontal diseases. Interventions that can lessen the microbial virulence and reconstitute microbial ecology have drawn increasing attention in the development of novel therapeutics for oral diseases. Antimicrobial small molecules are a series of natural or synthetic bioactive compounds that have shown inhibitory effect on oral microbiota associated with oral infectious diseases. Novel small molecules, which can either selectively inhibit keystone microbes that drive dysbiosis of oral microbiota or inhibit the key virulence of the microbial community without necessarily killing the microbes, are promising for the ecological management of oral diseases. Here we discussed the research progress in the development of antimicrobial small molecules and delivery systems, with a particular focus on their antimicrobial activity against typical species associated with oral infectious diseases and the underlying mechanisms.
Collapse
Affiliation(s)
- Sirui Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoying Lyu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yusen Shui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ran Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Fernández CE, Luo TL, González-Cabezas C, Rickard AH. Unsweetened and Sucrose-Sweetened Black and Green Tea Modifies the Architecture of In vitro Oral Biofilms. Arch Oral Biol 2022; 135:105368. [DOI: 10.1016/j.archoralbio.2022.105368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/02/2022]
|
9
|
Yang S, Zhang J, Yang R, Xu X. Small Molecule Compounds, A Novel Strategy against Streptococcus mutans. Pathogens 2021; 10:pathogens10121540. [PMID: 34959495 PMCID: PMC8708136 DOI: 10.3390/pathogens10121540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023] Open
Abstract
Dental caries, as a common oral infectious disease, is a worldwide public health issue. Oral biofilms are the main cause of dental caries. Streptococcus mutans (S. mutans) is well recognized as the major causative factor of dental caries within oral biofilms. In addition to mechanical removal such as tooth brushing and flossing, the topical application of antimicrobial agents is necessarily adjuvant to the control of caries particularly for high-risk populations. The mainstay antimicrobial agents for caries such as chlorhexidine have limitations including taste confusions, mucosal soreness, tooth discoloration, and disruption of an oral microbial equilibrium. Antimicrobial small molecules are promising in the control of S. mutans due to good antimicrobial activity, good selectivity, and low toxicity. In this paper, we discussed the application of antimicrobial small molecules to the control of S. mutans, with a particular focus on the identification and development of active compounds and their modes of action against the growth and virulence of S. mutans.
Collapse
Affiliation(s)
- Sirui Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China; (S.Y.); (J.Z.)
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China; (S.Y.); (J.Z.)
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ran Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China; (S.Y.); (J.Z.)
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (R.Y.); (X.X.)
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China; (S.Y.); (J.Z.)
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (R.Y.); (X.X.)
| |
Collapse
|
10
|
Schneider-Rayman M, Steinberg D, Sionov RV, Friedman M, Shalish M. Effect of epigallocatechin gallate on dental biofilm of Streptococcus mutans: An in vitro study. BMC Oral Health 2021; 21:447. [PMID: 34525984 PMCID: PMC8444437 DOI: 10.1186/s12903-021-01798-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Streptococcus mutans (S. mutans) plays a major role in the formation of dental caries. The aim of this study was to examine the effect of the green tea polyphenol, epigallocatechin gallate (EGCG), on biofilm formation of S. mutans. METHODS Following exposure to increasing concentrations of EGCG, the planktonic growth was measured by optical density and the biofilm biomass was quantified by crystal violet staining. Exopolysaccharides (EPS) production was visualized by confocal scanning laser microscopy, and the bacterial DNA content was determined by quantitative polymerase chain reaction (qPCR). Gene expression of selected genes was analyzed by real time (RT)-qPCR and membrane potential was examined by flow cytometry. RESULTS We observed that EGCG inhibited in a dose-dependent manner both the planktonic growth and the biofilm formation of S. mutans. Significant reduction of S. mutans biofilm formation, DNA content, and EPS production was observed at 2.2-4.4 mg/ml EGCG. EGCG reduced the expression of gtfB, gtfC and ftf genes involved in EPS production, and the nox and sodA genes involved in the protection against oxidative stress. Moreover, EGCG caused an immediate change in membrane potential. CONCLUSIONS EGCG, a natural polyphenol, has a significant inhibitory effect on S. mutans dental biofilm formation and EPS production, and thus might be a potential drug in preventing dental caries.
Collapse
Affiliation(s)
- Mor Schneider-Rayman
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dentistry, Hebrew University of Jerusalem, Jerusalem, Israel.
- Department of Pharmaceutics, The Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
- Department of Orthodontics, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Doron Steinberg
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dentistry, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ronit Vogt Sionov
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dentistry, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael Friedman
- Department of Pharmaceutics, The Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Miriam Shalish
- Department of Orthodontics, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
11
|
Liao MH, Wang XR, Hsu WL, Tzen JTC. Pu'er tea rich in strictinin and catechins prevents biofilm formation of two cariogenic bacteria, Streptococcus mutans and Streptococcus sobrinus. J Dent Sci 2021; 16:1331-1334. [PMID: 34484613 PMCID: PMC8403805 DOI: 10.1016/j.jds.2021.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/24/2021] [Indexed: 01/13/2023] Open
Abstract
Cariogenic bacteria, such as Streptococcus mutans and Streptococcus sobrinus, are main pathogens responsible for human dental caries. Pu'er tea is empirically observed to prevent tooth decay. Besides caffeine and catechins commonly found in oolong tea, strictinin is also found as an abundant phenolic compound in Pu'er tea. Infusion of Pu'er tea as well as single compound, strictinin, caffeine or (−)-epigallocatechin gallate (EGCG) was examined for its inhibitory effects on S. mutans and S. sobrinus. Relatively weak inhibition of bacterial growth was observed for these Pu'er tea constituents. However, biofilm formation of S. mutans or S. sobrinus was strongly prevented by the infusion of Pu'er tea as well as by strictinin or EGCG, but not caffeine. Relatively, strictinin showed a higher potency than EGCG to prevent biofilm formation. Anti-caries effect of Pu'er tea seems to be resulted from the prevention of biofilm formation of cariogenic bacteria mainly by strictinin and catechins.
Collapse
Affiliation(s)
- Man-Hua Liao
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Xiu-Ru Wang
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Wei-Li Hsu
- Graduate Institute of Microbiology and Public Health, National Chung-Hsing University, Taichung, Taiwan
| | - Jason T C Tzen
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| |
Collapse
|
12
|
Efenberger-Szmechtyk M, Nowak A, Czyżowska A, Śniadowska M, Otlewska A, Żyżelewicz D. Antibacterial mechanisms of Aronia melanocarpa (Michx.), Chaenomeles superba Lindl. and Cornus mas L. leaf extracts. Food Chem 2021; 350:129218. [PMID: 33621817 DOI: 10.1016/j.foodchem.2021.129218] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 10/22/2022]
Abstract
The aim of this study was to investigate the in vitro antibacterial mechanisms of Aronia melanocarpa, Chaenomeles superba, and Cornus mas leaf extracts towards meat spoilage and pathogenic bacteria. The extracts decreased bacterial viability after 24 h and 48 h of incubation. Acting as prooxidants, the extracts induced intracellular ROS (reactive oxygen species) generation in bacteria cells, with C. mas having the strongest influence. The leaf extracts increased the release of UV intracellular absorbing components, suggesting a reduction in membrane integrity. They also increased the outer-membrane permeability of the Gram-negative bacteria, with C. superba extract being the most active. Following exposure to the leaf extracts, morphological changes in the bacteria were observed, including the formation of aggregates, EPS synthesis, irregular forms, wrinkled cell surfaces, pores in the cell wall, and shriveling of cells. The leaf extracts inhibited DNA synthesis in E. coli cells by suppressing DNA gyrase activity.
Collapse
Affiliation(s)
- Magdalena Efenberger-Szmechtyk
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Agnieszka Nowak
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Agata Czyżowska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Monika Śniadowska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Anna Otlewska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Dorota Żyżelewicz
- Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland.
| |
Collapse
|
13
|
Inhibition of Biofilm Formation by the Synergistic Action of EGCG-S and Antibiotics. Antibiotics (Basel) 2021; 10:antibiotics10020102. [PMID: 33494273 PMCID: PMC7909832 DOI: 10.3390/antibiotics10020102] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 12/18/2022] Open
Abstract
Biofilm, a stress-induced physiological state, is an established means of antimicrobial tolerance. A perpetual increase in multidrug resistant (MDR) infections associated with high mortality and morbidity have been observed in healthcare settings. Multiple studies have indicated that the use of natural products can prevent bacterial growth. Recent studies in the field have identified that epigallocatechin gallate (EGCG), a green tea polyphenol, could disrupt bacterial biofilms. A modified lipid-soluble EGCG, epigallocatechin-3-gallate-stearate (EGCG-S), has enhanced the beneficial properties of green tea. This study focuses on utilizing EGCG-S as a novel synergistic agent with antibiotics to prevent or control biofilm. Different formulations of EGCG-S and selected antibiotics were used to study their combinatorial effects on biofilms produced by five potential pathogenic bacteria, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, and Mycobacterium smegmatis. The crystal violet (CV) assay and the sensitive fluorescence-based resazurin biofilm viability assay were used to assess the biofilm production. Our results identified optimal formulation for each bacterium, effectively inhibiting biofilm formation to an extent of 95-99%. Colony-forming unit (CFU) and cell viability analyses showed a decrease of viable bacteria. These results depict the potential of EGCG-S as a synergistic agent with antibiotics and as an anti-biofilm agent.
Collapse
|
14
|
Moghadam ET, Yazdanian M, Tahmasebi E, Tebyanian H, Ranjbar R, Yazdanian A, Seifalian A, Tafazoli A. Current herbal medicine as an alternative treatment in dentistry: In vitro, in vivo and clinical studies. Eur J Pharmacol 2020; 889:173665. [PMID: 33098834 DOI: 10.1016/j.ejphar.2020.173665] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/29/2022]
Abstract
Since the time that human population comprehended the importance of general health maintenance and the burden of disease, there has been a search for healing properties in the natural environment. Herbal medicine is the use of plants with medical properties for prevention and treatment of conditions that can affect general health. Recently, a growing interest has been observed toward the use of traditional herbal medicine alongside synthetic modern drugs. Around 80% of the population, especially in developing countries relies on it for healthcare. Oral healthcare is considered a major part of general health. According to the world health organization (WHO), oral health is considered an important part of general health and quality of life. The utilization of natural medications for the management of pathologic oro-dental conditions can be a logical alternative to pharmaceutical methods due to their availability, low costs, and lower side effects. The current literature review aimed at exploration of the variety and extent of herbal products application in oral health maintenance including different fields of oral healthcare such as dental caries, periodontal maintenance, microbial infections, oral cancers, and inflammatory conditions.
Collapse
Affiliation(s)
- Ehsan Tafazoli Moghadam
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hamid Tebyanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Reza Ranjbar
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Yazdanian
- Department of Veterinary, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre (NanoRegMed Ltd), The London Bioscience Innovation Centre, London, United Kingdom
| | - Ali Tafazoli
- Clinical Pharmacy Department, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Wang Y, Lam ATW. Epigallocatechin gallate and gallic acid affect colonization of abiotic surfaces by oral bacteria. Arch Oral Biol 2020; 120:104922. [PMID: 33045616 DOI: 10.1016/j.archoralbio.2020.104922] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/06/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVES epigallocatechin gallate and gallic acid are known antimicrobial agents. Their roles in controlling microbial colonization, such as bacterial attachment and biofilm formation, are however not completely clear. This study aims to investigate their effects on the colonization of abiotic surfaces by oral bacteria and study the mechanism of their activities. DESIGN the effects of epigallocatechin gallate and gallic acid on cell surface physicochemical properties (hydrophobicity and charge) of a range of oral bacteria and their auto-aggregation, attachment and biofilm formation on different abiotic surfaces (glass, stainless steel and hydroxyapatite) were studied. RESULTS results show that epigallocatechin gallate inhibited bacterial attachment to the hard surfaces (except hydroxyapatite) by 0.2-1.4 log CFU cm-2 by affecting cell surface hydrophobicity and charge. In addition, epigallocatechin gallate induced notches on cell surfaces of Streptococcus mutans without affecting their viability and biofilm formation. Gallic acid enhanced auto-aggregation (by 7.9-30.6 %) and biofilm formation by Actinomyces naeslundii (by 0.9-1.2 log CFU cm-2) by causing calcium efflux from the cells. CONCLUSIONS the tested phytochemicals influenced the colonization of abiotic surfaces by oral bacteria through different mechanisms, most notably via affecting cell surface physicochemical properties, inducing changes in the shape of cell envelopes and causing calcium efflux.
Collapse
Affiliation(s)
- Yi Wang
- School of Dentistry, the University of Queensland, 288, Herston Road, Herston, Brisbane, Queensland 4006, Australia.
| | - Antonia T W Lam
- School of Dentistry, the University of Queensland, 288, Herston Road, Herston, Brisbane, Queensland 4006, Australia
| |
Collapse
|
16
|
Polyphenols in Dental Applications. Bioengineering (Basel) 2020; 7:bioengineering7030072. [PMID: 32645860 PMCID: PMC7552636 DOI: 10.3390/bioengineering7030072] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
(1) Background: polyphenols are a broad class of molecules extracted from plants and have a large repertoire of biological activities. Biomimetic inspiration from the effects of tea or red wine on the surface of cups or glass lead to the emergence of versatile surface chemistry with polyphenols. Owing to their hydrogen bonding abilities, coordination chemistry with metallic cations and redox properties, polyphenols are able to interact, covalently or not, with a large repertoire of chemical moieties, and can hence be used to modify the surface chemistry of almost all classes of materials. (2) Methods: the use of polyphenols to modify the surface properties of dental materials, mostly enamel and dentin, to afford them with better adhesion to resins and improved biological properties, such as antimicrobial activity, started more than 20 years ago, but no general overview has been written to our knowledge. (3) Results: the present review is aimed to show that molecules from all the major classes of polyphenolics allow for low coast improvements of dental materials and engineering of dental tissues.
Collapse
|
17
|
Taylor PW. Interactions of Tea-Derived Catechin Gallates with Bacterial Pathogens. Molecules 2020; 25:E1986. [PMID: 32340372 PMCID: PMC7221614 DOI: 10.3390/molecules25081986] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 01/08/2023] Open
Abstract
Green tea-derived galloylated catechins have weak direct antibacterial activity against both Gram-positive and Gram-negative bacterial pathogens and are able to phenotypically transform, at moderate concentrations, methicillin-resistant Staphylococcus aureus (MRSA) clonal pathogens from full β-lactam resistance (minimum inhibitory concentration 256-512 mg/L) to complete susceptibility (~1 mg/L). Reversible conversion to susceptibility follows intercalation of these compounds into the bacterial cytoplasmic membrane, eliciting dispersal of the proteins associated with continued cell wall peptidoglycan synthesis in the presence of β-lactam antibiotics. The molecules penetrate deep within the hydrophobic core of the lipid palisade to force a reconfiguration of cytoplasmic membrane architecture. The catechin gallate-induced staphylococcal phenotype is complex, reflecting perturbation of an essential bacterial organelle, and includes prevention and inhibition of biofilm formation, disruption of secretion of virulence-related proteins, dissipation of halotolerance, cell wall thickening and cell aggregation and poor separation of daughter cells during cell division. These features are associated with the reduction of capacity of potential pathogens to cause lethal, difficult-to-treat infections and could, in combination with β-lactam agents that have lost therapeutic efficacy due to the emergence of antibiotic resistance, form the basis of a new approach to the treatment of staphylococcal infections.
Collapse
Affiliation(s)
- Peter W Taylor
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| |
Collapse
|
18
|
Hasheminejad N, Malek Mohammadi T, Mahmoodi MR, Barkam M, Shahravan A. The association between beverage consumption pattern and dental problems in Iranian adolescents: a cross sectional study. BMC Oral Health 2020; 20:74. [PMID: 32183764 PMCID: PMC7079373 DOI: 10.1186/s12903-020-01065-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/06/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND With regard to the increasing consumption rates of unhealthy beverages among adolescents, the main purpose of the present study was to determine the association between beverage intake pattern and dental caries and tooth erosion in this age group. METHODS A total sample of 600 adolescents was recruited in this study using a multistage cluster random sampling method in the city of Kerman, in the southeast of Iran, in 2017. Then, the Decayed, Missed and Filled Teeth (DMFT) index and the Tooth Wear Index (TWI) were registered for each participant. A Beverage Frequency Questionnaire was also employed to estimate typical beverage intake frequency. Correspondingly, negative binominal regression and logistic regression were performed to determine the independent variables associated with the DMFT index and the TWI. RESULTS The findings revealed that the highest consumed beverage in daily living was tea in both genders, followed by sweetened soft beverages, as well as milk and kefir/yogurt drink. The results of the DMFT index were also significantly different in participants that had never consumed milk compared with those who had used milk on a daily basis. Moreover, the DMFT index in participants who had never consumed sweetened soft beverages was 39%, less than those who had had a daily intake of such beverages. Also, the chance of tooth erosion for participants who had never used sweetened soft beverages was 94%, lower than that in daily consumers. CONCLUSIONS The results of this study revealed that adolescents had an unhealthy beverage intake pattern. Furthermore, milk consumption was beneficial to dental caries, whereas use of soft drinks associated with more dental caries and tooth erosion.
Collapse
Affiliation(s)
- Naimeh Hasheminejad
- Oral and Dental Disease Research Center and Kerman Social Determinants on Oral Health Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Tayebeh Malek Mohammadi
- Social Determinants of Health Research Center, Institute for Futures Studies in Health, Department of Dental Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Mahmoodi
- Physiology Research Center, Institute of Basic and Clinical Physiology & Department of Nutrition, Faculty of Health, Kerman University of Medical Sciences, Haft Bagh-E-Alavi Highway, Kerman, 7635111167, Iran.
| | - Moein Barkam
- Oral and Dental Disease Research Center and Kerman Social Determinants on Oral Health Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Arash Shahravan
- Endodontology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
19
|
Moein N, Alavi FN, Salari A, Mojtahedi A, Tajer A. Effect of Listerine Mouthwash with Green Tea on the Inhibition of Streptococcus Mutans: A Microbiologic Study. PESQUISA BRASILEIRA EM ODONTOPEDIATRIA E CLÍNICA INTEGRADA 2020. [DOI: 10.1590/pboci.2020.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | | | | | - Amir Tajer
- Guilan University of Medical Sciences, Iran
| |
Collapse
|
20
|
Kaya Z, Yayla M, Cinar I, Atila NE, Ozmen S, Bayraktutan Z, Bilici D. Epigallocatechin-3-gallate (EGCG) exert therapeutic effect on acute inflammatory otitis media in rats. Int J Pediatr Otorhinolaryngol 2019; 124:106-110. [PMID: 31176023 DOI: 10.1016/j.ijporl.2019.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/11/2019] [Accepted: 05/11/2019] [Indexed: 11/26/2022]
Abstract
INTRODUCTION That EGCG has strong antioxidant and anti-inflammatory activities as well as antibacterial activity against many streptococcus species suggests that it may be beneficial in the treatment of AOM. OBJECTIVE Aim of the study is to reveal the molecular and biochemical effects of EGCG on LPS induced otitis media in rats. METHODS Forty-two male albino Wistar rats were randomly divided into 7 groups. Inflammation was induced by administrating 50 μL of 1 mg/ml lipopolysaccharide (LPS). EGCG used 50 and 100 mg/kg/day and combined penicillin G (PENG) 48 h after LPS injection. RESULTS The combined EGCG 50 and PENG group and the group with EGCG 50 alone showed the best anti-inflammatory effect on LPS-induced AOM. TNF-α and IL-1β gene expression significantly down regulated EGCG 50 and combined with PENG compared to the otitis media group. The combination of PenG and EGCG 50 led to the best histopathological improvement. Both the inflammation and the membrane thickness of this group were at almost the same level as the healthy group and tympanum was seen normal. CONCLUSION The results of this study make it clear that EGCG plays an important role in antioxidant and anti-inflammatory activity during AOM.
Collapse
Affiliation(s)
- Zulkuf Kaya
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Muhammed Yayla
- Department of Pharmacology, Kafkas University, Faculty of Medicine, 36180, Kars, Turkey.
| | - Irfan Cinar
- Department of Pharmacology, Ataturk University, Faculty of Medicine, 25240, Erzurum, Turkey
| | - Nihal Efe Atila
- Department of Otorhinolaryngology, Head and Neck Surgery, Erzurum Training and Research Hospital, 25240, Erzurum, Turkey
| | - Sevilay Ozmen
- Department of Pathology, Ataturk University, Faculty of Medicine, 25240, Erzurum, Turkey
| | - Zafer Bayraktutan
- Department of Biochemistry, Ataturk University Faculty of Medicine, 25240, Erzurum, Turkey
| | - Dilek Bilici
- Department of Microbiology, Erzurum Training and Research Hospital, 25240, Erzurum, Turkey
| |
Collapse
|
21
|
Scharnow AM, Solinski AE, Wuest WM. Targeting S. mutans biofilms: a perspective on preventing dental caries. MEDCHEMCOMM 2019; 10:1057-1067. [PMID: 31391878 PMCID: PMC6644389 DOI: 10.1039/c9md00015a] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
The prevalence of biofilm diseases, and dental caries in particular, have encouraged extensive research on S. mutans biofilms, including methods of preventing its formation. Numerous small molecules with specific anti-biofilm activity against this pathogen have been isolated and synthesized. Generally, these molecules can be characterized into three categories: sucrose-dependent anti-adhesion, sucrose-independent anti-adhesion and cellular signaling interference. This review aims to provide an overview of the current small molecule strategies used for targeting S. mutans biofilms, and a perspective of the future for the field.
Collapse
Affiliation(s)
- Amber M Scharnow
- Emory University , Chemistry Department , 1515 Dickey Dr , Atlanta , GA 30322 , USA .
| | - Amy E Solinski
- Emory University , Chemistry Department , 1515 Dickey Dr , Atlanta , GA 30322 , USA .
| | - William M Wuest
- Emory University , Chemistry Department , 1515 Dickey Dr , Atlanta , GA 30322 , USA .
| |
Collapse
|
22
|
Hengge R. Targeting Bacterial Biofilms by the Green Tea Polyphenol EGCG. Molecules 2019; 24:molecules24132403. [PMID: 31261858 PMCID: PMC6650844 DOI: 10.3390/molecules24132403] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/20/2022] Open
Abstract
Bacterial biofilms are multicellular aggregates in which cells are embedded in an extracellular matrix of self-produced biopolymers. Being refractory to antibiotic treatment and host immune systems, biofilms are involved in most chronic infections, and anti-biofilm agents are being searched for urgently. Epigallocatechin-3-gallate (EGCG) was recently shown to act against biofilms by strongly interfering with the assembly of amyloid fibres and the production of phosphoethanolamin-modified cellulose fibrils. Mechanistically, this includes a direct inhibition of the fibre assembly, but also triggers a cell envelope stress response that down-regulates the synthesis of these widely occurring biofilm matrix polymers. Based on its anti-amyloidogenic properties, EGCG seems useful against biofilms involved in cariogenesis or chronic wound infection. However, EGCG seems inefficient against or may even sometimes promote biofilms which rely on other types of matrix polymers, suggesting that searching for 'magic bullet' anti-biofilm agents is an unrealistic goal. Combining molecular and ecophysiological aspects in this review also illustrates why plants control the formation of biofilms on their surfaces by producing anti-amyloidogenic compounds such as EGCG. These agents are not only helpful in combating certain biofilms in chronic infections but even seem effective against the toxic amyloids associated with neuropathological diseases.
Collapse
Affiliation(s)
- Regine Hengge
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10155 Berlin, Germany.
| |
Collapse
|
23
|
Fiorillo L. Chlorhexidine Gel Use in the Oral District: A Systematic Review. Gels 2019; 5:gels5020031. [PMID: 31212600 PMCID: PMC6631404 DOI: 10.3390/gels5020031] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 05/28/2019] [Accepted: 06/05/2019] [Indexed: 12/18/2022] Open
Abstract
Chlorhexidine compounds and their different formulations have been investigated several times, especially in the dentistry field. Chlorhexidine application for mouth rinsing immediately underwent oral contraindications, linked to the possibility of causing pigmentation to the teeth or relating to possible cytotoxic events after oral surgery. The positive effects, however, are considerable and its topical antiseptic action has been widely demonstrated by in vitro and clinical research. That’s the reason for its large application in different fields of dentistry. The aim of this study is to collect all the literature regarding the use of chlorhexidine gel in dentistry and all the numerous applications. The initial search on search engines obtained 232 results; then, following the application of the inclusion criteria there were 24 selected articles. The chlorhexidine gel appliance in the dental daily practice is direct to oral surgery, conservative endodontics, prevention and prophylaxis. The use of chlorhexidine has shown some positive effects, also in the case of systemic diseases prevention. Surely, this topical medicine used both professionally and prescribed for home use, can be considered a great help for the prevention of several oral pathologies with systemic implications too.
Collapse
Affiliation(s)
- Luca Fiorillo
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, Messina University, 98100 Messina, Italy.
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania "Luigi Vanvitelli", 80100 Naples, Italy.
| |
Collapse
|
24
|
Farkash Y, Feldman M, Ginsburg I, Steinberg D, Shalish M. Polyphenols Inhibit Candida albicans and Streptococcus mutans Biofilm Formation. Dent J (Basel) 2019; 7:dj7020042. [PMID: 30978919 PMCID: PMC6630196 DOI: 10.3390/dj7020042] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/15/2022] Open
Abstract
Background:Streptococcus mutans (S. mutans) and Candida albicans (C. albicans) are two major contributors to dental caries. They have a symbiotic relationship, allowing them to create an enhanced biofilm. Our goal was to examine whether two natural polyphenols (Padma hepaten (PH) and a polyphenol extraction from green tea (PPFGT)) could inhibit the caries-inducing properties of S. mutans and C. albicans. Methods: Co-species biofilms of S. mutans and C. albicans were grown in the presence of PH and PPFGT. Biofilm formation was tested spectrophotometrically. Exopolysaccharides (EPS) secretion was quantified using confocal scanning laser microscopy. Biofilm development was also tested on orthodontic surfaces (Essix) to assess biofilm inhibition ability on such an orthodontic appliance. Results: PPFGT and PH dose-dependently inhibited biofilm formation without affecting the planktonic growth. We found a significant reduction in biofilm total biomass using 0.625 mg/mL PPFGT and 0.16 mg/mL PH. A concentration of 0.31 mg/mL PPFGT and 0.16 mg/mL PH inhibited the total cell growth by 54% and EPS secretion by 81%. A reduction in biofilm formation and EPS secretion was also observed on orthodontic PVC surfaces. Conclusions:
The polyphenolic extractions PPFGT and PH have an inhibitory effect on S. mutans and C. albicans biofilm formation and EPS secretion.
Collapse
Affiliation(s)
- Yosi Farkash
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dentistry, Hebrew University-Hadassah, P.O. Box 12065, Jerusalem 91120, Israel.
- Department of Orthodontics, School of Dental Medicine, Hebrew University-Hadassah, P.O. Box 12272, Jerusalem 91120, Israel.
| | - Mark Feldman
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dentistry, Hebrew University-Hadassah, P.O. Box 12065, Jerusalem 91120, Israel.
| | - Isaac Ginsburg
- Microbiology Research Laboratory, Institute of Dental Sciences, Faculty of Dentistry, Hebrew University-Hadassah, P.O. Box 12065, Jerusalem 91120, Israel.
| | - Doron Steinberg
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dentistry, Hebrew University-Hadassah, P.O. Box 12065, Jerusalem 91120, Israel.
| | - Miriam Shalish
- Department of Orthodontics, School of Dental Medicine, Hebrew University-Hadassah, P.O. Box 12272, Jerusalem 91120, Israel.
| |
Collapse
|