Kim H, Lee W, Lee HG, Jo H, Song Y, Ahn J. In situ single-atom array synthesis using dynamic holographic optical tweezers.
Nat Commun 2016;
7:13317. [PMID:
27796372 PMCID:
PMC5095563 DOI:
10.1038/ncomms13317]
[Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 09/22/2016] [Indexed: 11/17/2022] Open
Abstract
Establishing a reliable method to form scalable neutral-atom platforms is an essential cornerstone for quantum computation, quantum simulation and quantum many-body physics. Here we demonstrate a real-time transport of single atoms using holographic microtraps controlled by a liquid-crystal spatial light modulator. For this, an analytical design approach to flicker-free microtrap movement is devised and cold rubidium atoms are simultaneously rearranged with 2N motional degrees of freedom, representing unprecedented space controllability. We also accomplish an in situ feedback control for single-atom rearrangements with the high success rate of 99% for up to 10 μm translation. We hope this proof-of-principle demonstration of high-fidelity atom-array preparations will be useful for deterministic loading of N single atoms, especially on arbitrary lattice locations, and also for real-time qubit shuttling in high-dimensional quantum computing architectures.
It would be desirable to have a reliable and scalable method to manipulate neutral-atoms for the creation of controllable quantum systems. Here the authors demonstrate real-time transport of single rubidium atoms in holographic microtraps controlled by liquid-crystal spatial light modulators.
Collapse