1
|
Zhang H, Zhou QQ, Chen H, Hu XQ, Li WG, Bai Y, Han JX, Wang Y, Liang ZH, Chen D, Cong FY, Yan JQ, Li XL. The applied principles of EEG analysis methods in neuroscience and clinical neurology. Mil Med Res 2023; 10:67. [PMID: 38115158 PMCID: PMC10729551 DOI: 10.1186/s40779-023-00502-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023] Open
Abstract
Electroencephalography (EEG) is a non-invasive measurement method for brain activity. Due to its safety, high resolution, and hypersensitivity to dynamic changes in brain neural signals, EEG has aroused much interest in scientific research and medical fields. This article reviews the types of EEG signals, multiple EEG signal analysis methods, and the application of relevant methods in the neuroscience field and for diagnosing neurological diseases. First, three types of EEG signals, including time-invariant EEG, accurate event-related EEG, and random event-related EEG, are introduced. Second, five main directions for the methods of EEG analysis, including power spectrum analysis, time-frequency analysis, connectivity analysis, source localization methods, and machine learning methods, are described in the main section, along with different sub-methods and effect evaluations for solving the same problem. Finally, the application scenarios of different EEG analysis methods are emphasized, and the advantages and disadvantages of similar methods are distinguished. This article is expected to assist researchers in selecting suitable EEG analysis methods based on their research objectives, provide references for subsequent research, and summarize current issues and prospects for the future.
Collapse
Affiliation(s)
- Hao Zhang
- School of Systems Science, Beijing Normal University, Beijing, 100875, China
| | - Qing-Qi Zhou
- College of Electrical and Control Engineering, North China University of Technology, Beijing, 100041, China
| | - He Chen
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Xiao-Qing Hu
- Department of Psychology, the State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, 999077, China
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen, 518057, Guangdong, China
| | - Wei-Guang Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Yang Bai
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, 330006, China
| | - Jun-Xia Han
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, 100048, China
| | - Yao Wang
- School of Communication Science, Beijing Language and Culture University, Beijing, 100083, China
| | - Zhen-Hu Liang
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, Hebei, China.
| | - Dan Chen
- School of Computer Science, Wuhan University, Wuhan, 430072, China.
| | - Feng-Yu Cong
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116081, Liaoning, China.
| | - Jia-Qing Yan
- College of Electrical and Control Engineering, North China University of Technology, Beijing, 100041, China.
| | - Xiao-Li Li
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
- Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou), Guangzhou, 510335, China.
| |
Collapse
|
2
|
Belyaev M, Murugappan M, Velichko A, Korzun D. Entropy-Based Machine Learning Model for Fast Diagnosis and Monitoring of Parkinson's Disease. SENSORS (BASEL, SWITZERLAND) 2023; 23:8609. [PMID: 37896703 PMCID: PMC10610702 DOI: 10.3390/s23208609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/02/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
This study presents the concept of a computationally efficient machine learning (ML) model for diagnosing and monitoring Parkinson's disease (PD) using rest-state EEG signals (rs-EEG) from 20 PD subjects and 20 normal control (NC) subjects at a sampling rate of 128 Hz. Based on the comparative analysis of the effectiveness of entropy calculation methods, fuzzy entropy showed the best results in diagnosing and monitoring PD using rs-EEG, with classification accuracy (ARKF) of ~99.9%. The most important frequency range of rs-EEG for PD-based diagnostics lies in the range of 0-4 Hz, and the most informative signals were mainly received from the right hemisphere of the head. It was also found that ARKF significantly decreased as the length of rs-EEG segments decreased from 1000 to 150 samples. Using a procedure for selecting the most informative features, it was possible to reduce the computational costs of classification by 11 times, while maintaining an ARKF ~99.9%. The proposed method can be used in the healthcare internet of things (H-IoT), where low-performance edge devices can implement ML sensors to enhance human resilience to PD.
Collapse
Affiliation(s)
- Maksim Belyaev
- Institute of Physics and Technology, Petrozavodsk State University, 185910 Petrozavodsk, Russia;
| | - Murugappan Murugappan
- Intelligent Signal Processing (ISP) Research Lab, Department of Electronics and Communication Engineering, Kuwait College of Science and Technology, Block 4, Kuwait City 13133, Kuwait;
- Department of Electronics and Communication Engineering, Faculty of Engineering, Vels Institute of Sciences, Technology, and Advanced Studies, Chennai 600117, India
- Centre of Excellence for Unmanned Aerial Systems (CoEUAS), Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
| | - Andrei Velichko
- Institute of Physics and Technology, Petrozavodsk State University, 185910 Petrozavodsk, Russia;
| | - Dmitry Korzun
- Department of Computer Science, Institute of Mathematics and Information Technology, Petrozavodsk State University, 185910 Petrozavodsk, Russia;
| |
Collapse
|
3
|
Qiao R, Zhang H, Tian Y. EEG cortical network reveals the temporo-spatial mechanism of visual search. Brain Res Bull 2023; 203:110758. [PMID: 37704055 DOI: 10.1016/j.brainresbull.2023.110758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/06/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023]
Abstract
This study aims to explore a method based on brain networks for implicit attention by using wavelet coherence as feature to identify individual targets in the visual field, find the optimal classification rhythm and time window, and investigate the relationship between the optimal rhythm and N2pc event-related potential. The study uses a weighted minimum norm estimate to locate the sources of the scalp EEG and reconstructs the source time series. The functional connectivity between brain areas during the visual search process is evaluated using wavelet coherence analysis, and a lateral difference network is constructed based on the difference in coherence values between the left and right visual fields. A support vector machine classifier is trained based on the wavelet coherence network features to identify the target in the left or right visual field. We also extract N2pc from the source activity data of the parieto-occipital brain region and record the time period in which N2pc occurred. The study finds that the best classification performance is achieved in the theta rhythm from 200 to 400 ms and achieved an average classification accuracy of 87% (chance level: 51.07%) in a serial search task. And this time window corresponds to the time period when N2pc appeared. The results show that the use of wavelet coherence analysis to evaluate the functional connectivity between brain areas during the visual search process provides a new approach for analyzing brain activity. The study's findings regarding the relationship between the N2pc and theta rhythm and the effectiveness of using wavelet coherence network features based on the theta rhythm for visual search classification contribute to the understanding of the neural mechanisms underlying visual search.
Collapse
Affiliation(s)
- Rui Qiao
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Haiyong Zhang
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Yin Tian
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Institute for Advanced Sciences,Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China.
| |
Collapse
|
4
|
Aderinwale A, Tolossa GB, Kim AY, Jang EH, Lee YI, Jeon HJ, Kim H, Yu HY, Jeong J. Two-channel EEG based diagnosis of panic disorder and major depressive disorder using machine learning and non-linear dynamical methods. Psychiatry Res Neuroimaging 2023; 332:111641. [PMID: 37054495 DOI: 10.1016/j.pscychresns.2023.111641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 04/15/2023]
Abstract
The current study aimed to investigate the possibility of rapid and accurate diagnoses of Panic disorder (PD) and Major depressive disorder (MDD) using machine learning. The support vector machine method was applied to 2-channel EEG signals from the frontal lobes (Fp1 and Fp2) of 149 participants to classify PD and MDD patients from healthy individuals using non-linear measures as features. We found significantly lower correlation dimension and Lempel-Ziv complexity in PD patients and MDD patients in the left hemisphere compared to healthy subjects at rest. Most importantly, we obtained a 90% accuracy in classifying MDD patients vs. healthy individuals, a 68% accuracy in classifying PD patients vs. controls, and a 59% classification accuracy between PD and MDD patients. In addition to demonstrating classification performance in a simplified setting, the observed differences in EEG complexity between subject groups suggest altered cortical processing present in the frontal lobes of PD patients that can be captured through non-linear measures. Overall, this study suggests that machine learning and non-linear measures using only 2-channel frontal EEGs are useful for aiding the rapid diagnosis of panic disorder and major depressive disorder.
Collapse
Affiliation(s)
- Adedoyin Aderinwale
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea; Electronics and Telecommunications Research Institute (ETRI), Daejeon, 34129, South Korea
| | - Gemechu Bekele Tolossa
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea; Department of Neuroscience, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Ah Young Kim
- Electronics and Telecommunications Research Institute (ETRI), Daejeon, 34129, South Korea
| | - Eun Hye Jang
- Electronics and Telecommunications Research Institute (ETRI), Daejeon, 34129, South Korea
| | - Yong-Il Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Hong Jin Jeon
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hyewon Kim
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Han Young Yu
- Electronics and Telecommunications Research Institute (ETRI), Daejeon, 34129, South Korea.
| | - Jaeseung Jeong
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, South Korea.
| |
Collapse
|
5
|
Klepl D, He F, Wu M, Blackburn DJ, Sarrigiannis PG. Cross-Frequency Multilayer Network Analysis with Bispectrum-based Functional Connectivity: A Study of Alzheimer's Disease. Neuroscience 2023; 521:77-88. [PMID: 37121381 DOI: 10.1016/j.neuroscience.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/08/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder known to affect functional connectivity (FC) across many brain regions. Linear FC measures have been applied to study the differences in AD by splitting neurophysiological signals, such as electroencephalography (EEG) recordings, into discrete frequency bands and analysing them in isolation from each other. We address this limitation by quantifying cross-frequency FC in addition to the traditional within-band approach. Cross-bispectrum, a higher-order spectral analysis approach, is used to measure the nonlinear FC and is compared with the cross-spectrum, which only measures the linear FC within bands. This work reports the reconstruction of a cross-frequency FC network where each frequency band is treated as a layer in a multilayer network with both inter- and intra-layer edges. Cross-bispectrum detects cross-frequency differences, mainly increased FC in AD cases in δ-θ coupling. Overall, increased strength of low-frequency coupling and decreased level of high-frequency coupling is observed in AD cases in comparison to healthy controls (HC). We demonstrate that a graph-theoretic analysis of cross-frequency brain networks is crucial to obtain a more detailed insight into their structure and function. Vulnerability analysis reveals that the integration and segregation properties of networks are enabled by different frequency couplings in AD networks compared to HCs. Finally, we use the reconstructed networks for classification. The extra cross-frequency coupling information can improve the classification performance significantly, suggesting an important role of cross-frequency FC. The results highlight the importance of studying nonlinearity and including cross-frequency FC in characterising AD.
Collapse
Affiliation(s)
- Dominik Klepl
- Centre for Computational Science and Mathematical Modelling, Coventry University, Coventry CV1 2JH, UK; Infocomm Research, A*STAR, Singapore
| | - Fei He
- Centre for Computational Science and Mathematical Modelling, Coventry University, Coventry CV1 2JH, UK.
| | - Min Wu
- Infocomm Research, A*STAR, Singapore
| | - Daniel J Blackburn
- Department of Neuroscience, University of Sheffield, SheffieldS10 2HQ, UK
| | | |
Collapse
|
6
|
Vicchietti ML, Ramos FM, Betting LE, Campanharo ASLO. Computational methods of EEG signals analysis for Alzheimer's disease classification. Sci Rep 2023; 13:8184. [PMID: 37210397 DOI: 10.1038/s41598-023-32664-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/30/2023] [Indexed: 05/22/2023] Open
Abstract
Computational analysis of electroencephalographic (EEG) signals have shown promising results in detecting brain disorders, such as Alzheimer's disease (AD). AD is a progressive neurological illness that causes neuron cells degeneration, resulting in cognitive impairment. While there is no cure for AD, early diagnosis is critical to improving the quality of life of affected individuals. Here, we apply six computational time-series analysis methods (wavelet coherence, fractal dimension, quadratic entropy, wavelet energy, quantile graphs and visibility graphs) to EEG records from 160 AD patients and 24 healthy controls. Results from raw and wavelet-filtered (alpha, beta, theta and delta bands) EEG signals show that some of the time-series analysis methods tested here, such as wavelet coherence and quantile graphs, can robustly discriminate between AD patients from elderly healthy subjects. They represent a promising non-invasive and low-cost approach to the AD detection in elderly patients.
Collapse
Affiliation(s)
- Mário L Vicchietti
- Department of Biodiversity and Biostatistics, Institute of Biosciences, São Paulo State University, Botucatu, 18618-689, Brazil
| | - Fernando M Ramos
- National Institute for Space Research, Earth System Science Center, São José dos Campos, 12227-010, Brazil
| | - Luiz E Betting
- Department of Neurology, Psychology and Psychiatry, Botucatu Medical School, São Paulo State University, Botucatu, 18618-687, Brazil
| | - Andriana S L O Campanharo
- Department of Biodiversity and Biostatistics, Institute of Biosciences, São Paulo State University, Botucatu, 18618-689, Brazil.
| |
Collapse
|
7
|
Hadiyoso S, Zakaria H, Anam Ong P, Erawati Rajab TL. Multi Modal Feature Extraction for Classification of Vascular Dementia in Post-Stroke Patients Based on EEG Signal. SENSORS (BASEL, SWITZERLAND) 2023; 23:1900. [PMID: 36850499 PMCID: PMC9966260 DOI: 10.3390/s23041900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Dementia is a term that represents a set of symptoms that affect the ability of the brain's cognitive functions related to memory, thinking, behavior, and language. At worst, dementia is often called a major neurocognitive disorder or senile disease. One of the most common types of dementia after Alzheimer's is vascular dementia. Vascular dementia is closely related to cerebrovascular disease, one of which is stroke. Post-stroke patients with recurrent onset have the potential to develop dementia. An accurate diagnosis is needed for proper therapy management to ensure the patient's quality of life and prevent it from worsening. The gold standard diagnostic of vascular dementia is complex, includes psychological tests, complete memory tests, and is evidenced by medical imaging of brain lesions. However, brain imaging methods such as CT-Scan, PET-Scan, and MRI have high costs and cannot be routinely used in a short period. For more than two decades, electroencephalogram signal analysis has been an alternative in assisting the diagnosis of brain diseases associated with cognitive decline. Traditional EEG analysis performs visual observations of signals, including rhythm, power, and spikes. Of course, it requires a clinician expert, time consumption, and high costs. Therefore, a quantitative EEG method for identifying vascular dementia in post-stroke patients is discussed in this study. This study used 19 EEG channels recorded from normal elderly, post-stroke with mild cognitive impairment, and post-stroke with dementia. The QEEG method used for feature extraction includes relative power, coherence, and signal complexity; the evaluation performance of normal-mild cognitive impairment-dementia classification was conducted using Support Vector Machine and K-Nearest Neighbor. The results of the classification simulation showed the highest accuracy of 96% by Gaussian SVM with a sensitivity and specificity of 95.6% and 97.9%, respectively. This study is expected to be an additional criterion in the diagnosis of dementia, especially in post-stroke patients.
Collapse
Affiliation(s)
- Sugondo Hadiyoso
- School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung 40116, Indonesia
- School of Applied Science, Telkom University, Bandung 40257, Indonesia
| | - Hasballah Zakaria
- School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung 40116, Indonesia
| | - Paulus Anam Ong
- Department of Neurology, Dr. Hasan Sadikin General Hospital, Bandung 40161, Indonesia
| | | |
Collapse
|
8
|
Sushkova OS, Morozov AA, Kershner IA, Khokhlova MN, Gabova AV, Karabanov AV, Chigaleichick LA, Illarioshkin SN. Investigation of Phase Shifts Using AUC Diagrams: Application to Differential Diagnosis of Parkinson's Disease and Essential Tremor. SENSORS (BASEL, SWITZERLAND) 2023; 23:1531. [PMID: 36772568 PMCID: PMC9921843 DOI: 10.3390/s23031531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
This study was motivated by the well-known problem of the differential diagnosis of Parkinson's disease and essential tremor using the phase shift between the tremor signals in the antagonist muscles of patients. Different phase shifts are typical for different diseases; however, it remains unclear how this parameter can be used for clinical diagnosis. Neurophysiological papers have reported different estimations of the accuracy of this parameter, which varies from insufficient to 100%. To address this issue, we developed special types of area under the ROC curve (AUC) diagrams and used them to analyze the phase shift. Different phase estimations, including the Hilbert instantaneous phase and the cross-wavelet spectrum mean phase, were applied. The results of the investigation of the clinical data revealed several regularities with opposite directions in the phase shift of the electromyographic signals in patients with Parkinson's disease and essential tremor. The detected regularities provide insights into the contradictory results reported in the literature. Moreover, the developed AUC diagrams show the potential for the investigation of neurodegenerative diseases related to the hyperkinetic movements of the extremities and the creation of high-accuracy methods of clinical diagnosis.
Collapse
Affiliation(s)
- Olga S. Sushkova
- Kotel’nikov Institute of Radio Engineering and Electronics of RAS, Mokhovaya 11-7, 125009 Moscow, Russia
| | - Alexei A. Morozov
- Kotel’nikov Institute of Radio Engineering and Electronics of RAS, Mokhovaya 11-7, 125009 Moscow, Russia
| | - Ivan A. Kershner
- Kotel’nikov Institute of Radio Engineering and Electronics of RAS, Mokhovaya 11-7, 125009 Moscow, Russia
| | - Margarita N. Khokhlova
- Kotel’nikov Institute of Radio Engineering and Electronics of RAS, Mokhovaya 11-7, 125009 Moscow, Russia
| | - Alexandra V. Gabova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Butlerova 5A, 117485 Moscow, Russia
| | - Alexei V. Karabanov
- FSBI “Research Center of Neurology”, Volokolamskoe Shosse 80, 125367 Moscow, Russia
| | | | | |
Collapse
|
9
|
Chawla P, Rana SB, Kaur H, Singh K, Yuvaraj R, Murugappan M. A decision support system for automated diagnosis of Parkinson’s disease from EEG using FAWT and entropy features. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
10
|
Detection of Parkinson's disease from EEG signals using discrete wavelet transform, different entropy measures, and machine learning techniques. Sci Rep 2022; 12:22547. [PMID: 36581646 PMCID: PMC9800369 DOI: 10.1038/s41598-022-26644-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022] Open
Abstract
Early detection of Parkinson's disease (PD) is very important in clinical diagnosis for preventing disease development. In this study, we present efficient discrete wavelet transform (DWT)-based methods for detecting PD from health control (HC) in two cases, namely, off-and on-medication. First, the EEG signals are preprocessed to remove major artifacts before being decomposed into several EEG sub-bands (approximate and details) using DWT. The features are then extracted from the wavelet packet-derived reconstructed signals using different entropy measures, namely, log energy entropy, Shannon entropy, threshold entropy, sure entropy, and norm entropy. Several machine learning techniques are investigated to classify the resulting PD/HC features. The effects of DWT coefficients and brain regions on classification accuracy are being investigated as well. Two public datasets are used to verify the proposed methods: the SanDiego dataset (31 subjects, 93 min) and the UNM dataset (54 subjects, 54 min). The results are promising and show that four entropy measures: log energy entropy, threshold entropy, sure entropy, and modified-Shannon entropy (TShEn) lead to high classification accuracy, indicating they are good biomarkers for PD detection. With the SanDiego dataset, the classification results of off-medication PD versus HC are 99.89, 99.87, and 99.91 for accuracy, sensitivity, and specificity, respectively, using the combination of DWT + TShEn and KNN classifier. Using the same combination, the results of on-medication PD versus HC are 94.21, 93.33, and 95%. With the UNM dataset, the obtained classification accuracy is around 99.5% in both cases of off-and on-medication PD using DWT + TShEn + SVM and DWT + ThEn + KNN, respectively. The results also demonstrate the importance of all DWT coefficients and that selecting a suitable small number of EEG channels from several brain regions could improve the classification accuracy.
Collapse
|
11
|
Li Z, Fei F, Zhang G. Edge-to-Cloud IIoT for Condition Monitoring in Manufacturing Systems with Ubiquitous Smart Sensors. SENSORS (BASEL, SWITZERLAND) 2022; 22:5901. [PMID: 35957460 PMCID: PMC9371406 DOI: 10.3390/s22155901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/20/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The Industrial Internet of Things (IIoT) connects industrial assets to ubiquitous smart sensors and actuators to enhance manufacturing and industrial processes. Data-driven condition monitoring is an essential technology for intelligent manufacturing systems to identify anomalies from malfunctioning equipment, prevent unplanned downtime, and reduce the operation costs by predictive maintenance without interrupting normal machine operations. However, data-driven condition monitoring requires massive data collected from smart sensors to be transmitted to the cloud for further processing, thereby contributing to network congestion and affecting the network performance. Furthermore, unbalanced training data with very few labelled anomalies limit supervised learning models because of the lack of sufficient fault data for the training process in anomaly detection algorithms. To address these issues, we proposed an IIoT-based condition monitoring system with an edge-to-cloud architecture and computed the relative wavelet energy as feature vectors on the edge layer to reduce the network traffic overhead. We also proposed an unsupervised deep long short-term memory (LSTM) network module for anomaly detection. We implemented the proposed IIoT condition monitoring system for a manufacturing machine in a real shop site to evaluate our proposed solution. Our experimental results verify the effectiveness of our approach which can not only reduce the network traffic overhead for the IIoT but also detect anomalies accurately.
Collapse
Affiliation(s)
- Zhi Li
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
| | - Fei Fei
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
| | - Guanglie Zhang
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
12
|
Cao J, Zhao Y, Shan X, Blackburn D, Wei J, Erkoyuncu JA, Chen L, Sarrigiannis PG. Ultra-high-resolution time-frequency analysis of EEG to characterise brain functional connectivity with the application in Alzheimer's disease. J Neural Eng 2022; 19. [PMID: 35896105 DOI: 10.1088/1741-2552/ac84ac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 07/27/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE This study aims to explore the potential of high-resolution brain functional connectivity based on electroencephalogram (EEG), a non-invasive low-cost technique, to be translated into a long-overdue biomarker and a diagnostic method for Alzheimer's disease (AD). APPROACH The paper proposes a novel ultra-high-resolution time-frequency nonlinear cross-spectrum method to construct a promising biomarker of AD pathophysiology. Specifically, using the peak frequency estimated from a Revised Hilbert-Huang Transformation cross-spectrum as a biomarker, the Support Vector Machine classifier is used to distinguish AD from healthy controls (HC). MAIN RESULTS With the combinations of the proposed biomarker and machine learning, we achieved a promising accuracy of 89%. The proposed method performs better than the wavelet cross-spectrum and other functional connectivity measures in the temporal or frequency domain, particularly in the Full, Delta and Alpha bands. Besides, a novel visualisation approach developed from topography is introduced to represent the brain functional connectivity, with which the difference between AD and HCs can be clearly displayed. The interconnections between posterior and other brain regions are obviously affected in AD. SIGNIFICANCE Those findings imply that the proposed RHHT approach could better track dynamic and nonlinear functional connectivity information, paving the way for the development of a novel diagnostic approach.
Collapse
Affiliation(s)
- Jun Cao
- Cranfield University, Building 30, Cranfield, Bedford, Cranfield, Bedfordshire, MK43 0AL, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Yifan Zhao
- Cranfield University, Building 30, Cranfield, Bedford, Cranfield, Bedfordshire, MK43 0AL, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Xiaocai Shan
- Cranfield University, Building 30, Cranfield, Bedford, Bedfordshire, MK43 0AL, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Daniel Blackburn
- Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 7HQ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Jize Wei
- Hong Kong Polytechnic University University Learning Hub, Department of Applied Mathematics, Kowloon, HONG KONG
| | - John Ahmet Erkoyuncu
- Cranfield University, Building 30, Cranfield, Bedford, Cranfield, Bedfordshire, MK43 0AL, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Liangyu Chen
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Sanhao street, Shenyang, 110004, CHINA
| | - Ptolemaios G Sarrigiannis
- Royal Devon and Exeter NHS Foundation Trust, 1, Exeter, EX2 5DW, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
13
|
Faldu KG, Shah JS. Alzheimer's disease: a scoping review of biomarker research and development for effective disease diagnosis. Expert Rev Mol Diagn 2022; 22:681-703. [PMID: 35855631 DOI: 10.1080/14737159.2022.2104639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 07/19/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is regarded as the foremost reason for neurodegeneration that prominently affects the geriatric population. Characterized by extracellular accumulation of amyloid-beta (Aβ), intracellular aggregation of hyperphosphorylated tau (p-tau), and neuronal degeneration that causes impairment of memory and cognition. Amyloid/tau/neurodegeneration (ATN) classification is utilized for research purposes and involves amyloid, tau, and neuronal injury staging through MRI, PET scanning, and CSF protein concentration estimations. CSF sampling is invasive, and MRI and PET scanning requires sophisticated radiological facilities which limit its widespread diagnostic use. ATN classification lacks effectiveness in preclinical AD. AREAS COVERED This publication intends to collate and review the existing biomarker profile and the current research and development of a new arsenal of biomarkers for AD pathology from different biological samples, microRNA (miRNA), proteomics, metabolomics, artificial intelligence, and machine learning for AD screening, diagnosis, prognosis, and monitoring of AD treatments. EXPERT OPINION It is an accepted observation that AD-related pathological changes occur over a long period of time before the first symptoms are observed providing ample opportunity for detection of biological alterations in various biological samples that can aid in early diagnosis and modify treatment outcomes.
Collapse
Affiliation(s)
- Khushboo Govind Faldu
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Jigna Samir Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
14
|
Klepl D, He F, Min W, Blackburn D, Sarrigiannis P. Bispectrum-based Cross-frequency Functional Connectivity: Classification of Alzheimer's disease. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:305-308. [PMID: 36086488 DOI: 10.1109/embc48229.2022.9871366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease known to affect brain functional connectivity (FC). Linear FC measures have been applied to study the differences in AD by splitting neurophysiological signals such as electroencephalography (EEG) recordings into discrete frequency bands and analysing them in isolation. We address this limitation by quantifying cross-frequency FC in addition to the traditional within-band approach. Cross-bispectrum, a higher-order spectral analysis, is used to measure the nonlinear FC and is compared with the cross-spectrum, which only measures the linear FC within bands. Each frequency coupling is then used to construct an FC network, which is in turn vectorised and used to train a classifier. We show that fusing features from networks improves classification accuracy. Although both within-frequency and cross-frequency networks can be used to predict AD with high accuracy, our results show that bispectrum-based FC outperforms cross-spectrum suggesting an important role of cross-frequency FC. Clinical relevance-This establishes diagnostic relevance of cross-frequency coupling in Alzheimer's disease.
Collapse
|
15
|
Cao J, Zhao Y, Shan X, Wei H, Guo Y, Chen L, Erkoyuncu JA, Sarrigiannis PG. Brain functional and effective connectivity based on electroencephalography recordings: A review. Hum Brain Mapp 2022; 43:860-879. [PMID: 34668603 PMCID: PMC8720201 DOI: 10.1002/hbm.25683] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/10/2021] [Accepted: 09/27/2021] [Indexed: 12/02/2022] Open
Abstract
Functional connectivity and effective connectivity of the human brain, representing statistical dependence and directed information flow between cortical regions, significantly contribute to the study of the intrinsic brain network and its functional mechanism. Many recent studies on electroencephalography (EEG) have been focusing on modeling and estimating brain connectivity due to increasing evidence that it can help better understand various brain neurological conditions. However, there is a lack of a comprehensive updated review on studies of EEG-based brain connectivity, particularly on visualization options and associated machine learning applications, aiming to translate those techniques into useful clinical tools. This article reviews EEG-based functional and effective connectivity studies undertaken over the last few years, in terms of estimation, visualization, and applications associated with machine learning classifiers. Methods are explored and discussed from various dimensions, such as either linear or nonlinear, parametric or nonparametric, time-based, and frequency-based or time-frequency-based. Then it is followed by a novel review of brain connectivity visualization methods, grouped by Heat Map, data statistics, and Head Map, aiming to explore the variation of connectivity across different brain regions. Finally, the current challenges of related research and a roadmap for future related research are presented.
Collapse
Affiliation(s)
- Jun Cao
- School of Aerospace, Transport and ManufacturingCranfield UniversityCranfield
| | - Yifan Zhao
- School of Aerospace, Transport and ManufacturingCranfield UniversityCranfield
| | - Xiaocai Shan
- School of Aerospace, Transport and ManufacturingCranfield UniversityCranfield
- Institute of Geology and Geophysics, Chinese Academy of SciencesBeijingChina
| | - Hua‐liang Wei
- Department of Automatic Control and Systems EngineeringUniversity of SheffieldSheffieldUK
| | - Yuzhu Guo
- School of Automation Science and Electrical EngineeringBeihang UniversityBeijingChina
| | - Liangyu Chen
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | | | | |
Collapse
|
16
|
Amini M, Pedram MM, Moradi A, Ouchani M. Diagnosis of Alzheimer's Disease by Time-Dependent Power Spectrum Descriptors and Convolutional Neural Network Using EEG Signal. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:5511922. [PMID: 33981355 PMCID: PMC8088352 DOI: 10.1155/2021/5511922] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/26/2021] [Accepted: 04/07/2021] [Indexed: 12/22/2022]
Abstract
Using strategies that obtain biomarkers where early symptoms coincide, the early detection of Alzheimer's disease and its complications is essential. Electroencephalogram is a technology that allows thousands of neurons with equal spatial orientation of the duration of cerebral cortex electrical activity to be registered by postsynaptic potential. Therefore, in this paper, the time-dependent power spectrum descriptors are used to diagnose the electroencephalogram signal function from three groups: mild cognitive impairment, Alzheimer's disease, and healthy control test samples. The final feature used in three modes of traditional classification methods is recorded: k-nearest neighbors, support vector machine, linear discriminant analysis approaches, and documented results. Finally, for Alzheimer's disease patient classification, the convolutional neural network architecture is presented. The results are indicated using output assessment. For the convolutional neural network approach, the accurate meaning of accuracy is 82.3%. 85% of mild cognitive impairment cases are accurately detected in-depth, but 89.1% of the Alzheimer's disease and 75% of the healthy population are correctly diagnosed. The presented convolutional neural network outperforms other approaches because performance and the k-nearest neighbors' approach is the next target. The linear discriminant analysis and support vector machine were at the low area under the curve values.
Collapse
Affiliation(s)
- Morteza Amini
- Department of Cognitive Modeling, Institute for Cognitive Science Studies, Shahid Beheshti University, Tehran, Iran
| | - Mir Mohsen Pedram
- Department of Electrical and Computer Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran
- Department of Cognitive Modeling, Institute for Cognitive Science Studies, Tehran, Iran
| | - AliReza Moradi
- Department of Clinical Psychology, Faculty of Psychology and Educational Science, Kharazmi University, Tehran, Iran
- Department of Cognitive Psychology, Institute for Cognitive Science Studies, Tehran, Iran
| | - Mahshad Ouchani
- Institute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
17
|
Khare SK, Bajaj V, Acharya UR. Detection of Parkinson’s disease using automated tunable Q wavelet transform technique with EEG signals. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Santos Toural JE, Montoya Pedrón A, Marañón Reyes EJ. Classification among healthy, mild cognitive impairment and Alzheimer’s disease subjects based on wavelet entropy and relative beta and theta power. Pattern Anal Appl 2020. [DOI: 10.1007/s10044-020-00910-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Sebastián-Romagosa M, Udina E, Ortner R, Dinarès-Ferran J, Cho W, Murovec N, Matencio-Peralba C, Sieghartsleitner S, Allison BZ, Guger C. EEG Biomarkers Related With the Functional State of Stroke Patients. Front Neurosci 2020; 14:582. [PMID: 32733182 PMCID: PMC7358582 DOI: 10.3389/fnins.2020.00582] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction Recent studies explored promising new quantitative methods to analyze electroencephalography (EEG) signals. This paper analyzes the correlation of two EEG parameters, Brain Symmetry Index (BSI) and Laterality Coefficient (LC), with established functional scales for the stroke assessment. Methods Thirty-two healthy subjects and thirty-six stroke patients with upper extremity hemiparesis were recruited for this study. The stroke patients where subdivided in three groups according to the stroke location: Cortical, Subcortical, and Cortical + Subcortical. The participants performed assessment visits to record the EEG in the resting state and perform functional tests using rehabilitation scales. Then, stroke patients performed 25 sessions using a motor-imagery based Brain Computer Interface system (BCI). BSI was calculated with the EEG data in resting state and LC was calculated with the Event-Related Synchronization maps. Results The results of this study demonstrated significant differences in the BSI between the healthy group and Subcortical group (P = 0.001), and also between the healthy and Cortical+Subcortical group (P = 0.019). No significant differences were found between the healthy group and the Cortical group (P = 0.505). Furthermore, the BSI analysis in the healthy group based on gender showed statistical differences (P = 0.027). In the stroke group, the correlation between the BSI and the functional state of the upper extremity assessed by Fugl-Meyer Assessment (FMA) was also significant, ρ = −0.430 and P = 0.046. The correlation between the BSI and the FMA-Lower extremity was not significant (ρ = −0.063, P = 0.852). Similarly, the LC calculated in the alpha band has significative correlation with FMA of upper extremity (ρ = −0.623 and P < 0.001) and FMA of lower extremity (ρ = −0.509 and P = 0.026). Other important significant correlations between LC and functional scales were observed. In addition, the patients showed an improvement in the FMA-upper extremity after the BCI therapy (ΔFMA = 1 median [IQR: 0–8], P = 0.002). Conclusion The quantitative EEG tools used here may help support our understanding of stroke and how the brain changes during rehabilitation therapy. These tools can help identify changes in EEG biomarkers and parameters during therapy that might lead to improved therapy methods and functional prognoses.
Collapse
Affiliation(s)
- Marc Sebastián-Romagosa
- Department of Physiology, Universitat Autònoma de Barcelona, Barcelona, Spain.,g.tec Medical Engineering Spain SL, Barcelona, Spain
| | - Esther Udina
- Department of Physiology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rupert Ortner
- g.tec Medical Engineering Spain SL, Barcelona, Spain
| | - Josep Dinarès-Ferran
- g.tec Medical Engineering Spain SL, Barcelona, Spain.,Data and Signal Processing Research Group, Department of Engineering, University of Vic - Central University of Catalonia, Vic, Spain
| | - Woosang Cho
- g.tec Medical Engineering GmbH, Schiedlberg, Austria
| | - Nensi Murovec
- g.tec Medical Engineering GmbH, Schiedlberg, Austria
| | | | | | - Brendan Z Allison
- Department of Cognitive Science, University of California at San Diego, La Jolla, CA, United States
| | - Christoph Guger
- g.tec Medical Engineering Spain SL, Barcelona, Spain.,g.tec Medical Engineering GmbH, Schiedlberg, Austria
| |
Collapse
|
20
|
Comparison of empirical mode decomposition and coarse-grained procedure for detecting pre-ictal and ictal condition in electroencephalography signal. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100325] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
21
|
Luo H, Huang Y, Xiao X, Dai W, Nie Y, Geng X, Green AL, Aziz TZ, Wang S. Functional dynamics of thalamic local field potentials correlate with modulation of neuropathic pain. Eur J Neurosci 2019; 51:628-640. [PMID: 31483893 DOI: 10.1111/ejn.14569] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/15/2019] [Accepted: 08/23/2019] [Indexed: 12/24/2022]
Abstract
Understanding the functional dynamics of neural oscillations in the sensory thalamus is essential for elucidating the perception and modulation of neuropathic pain. Local field potentials were recorded from the sensory thalamus of twelve neuropathic pain patients. Single and combinational neural states were defined by the activity state of a single or paired oscillations. Relationships between the duration or occurrence rate of neural state and pre-operative pain level or pain relief induced by deep brain stimulation were evaluated. Results showed that the occurrence rate of the single neural state of low-beta oscillation was significantly correlated with pain relief. The duration and occurrence rate of combinational neural states of the paired low-beta with delta, theta, alpha, high-beta or low-gamma oscillations were more significantly correlated with pain relief than the single neural states. Moreover, these significant combinational neural states formed a local oscillatory network with low-beta oscillation as a key node. The results also showed correlations between measures of combinational neural states and subjective pain level as well. The duration of combinational neural states of paired alpha with delta or theta oscillations and the occurrence rate of neural states of the paired delta with low-beta or low-gamma oscillations were significantly correlated with pre-operative pain level. In conclusion, this study revealed that the integration of oscillations and the functional dynamics of neural states were differentially involved in modulation and perception of neuropathic pain. The functional dynamics could be biomarkers for developing neural state-dependent deep brain stimulation for neuropathic pain.
Collapse
Affiliation(s)
- Huichun Luo
- School of Biomedical Engineering, University of Science and Technology of China, Hefei, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,Neural and Intelligence Engineering Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Yongzhi Huang
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Xiao Xiao
- Neural and Intelligence Engineering Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Wenjing Dai
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yingnan Nie
- Neural and Intelligence Engineering Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xinyi Geng
- Neural and Intelligence Engineering Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Alexander L Green
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Tipu Z Aziz
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Shouyan Wang
- Neural and Intelligence Engineering Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Auditory brain oscillatory responses in drug-naïve patients with Parkinson’s disease. Neurosci Lett 2019; 701:170-174. [DOI: 10.1016/j.neulet.2019.02.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/11/2019] [Accepted: 02/25/2019] [Indexed: 01/09/2023]
|
23
|
Cassani R, Estarellas M, San-Martin R, Fraga FJ, Falk TH. Systematic Review on Resting-State EEG for Alzheimer's Disease Diagnosis and Progression Assessment. DISEASE MARKERS 2018; 2018:5174815. [PMID: 30405860 PMCID: PMC6200063 DOI: 10.1155/2018/5174815] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/12/2018] [Accepted: 07/29/2018] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that accounts for nearly 70% of the more than 46 million dementia cases estimated worldwide. Although there is no cure for AD, early diagnosis and an accurate characterization of the disease progression can improve the quality of life of AD patients and their caregivers. Currently, AD diagnosis is carried out using standardized mental status examinations, which are commonly assisted by expensive neuroimaging scans and invasive laboratory tests, thus rendering the diagnosis time consuming and costly. Notwithstanding, over the last decade, electroencephalography (EEG) has emerged as a noninvasive alternative technique for the study of AD, competing with more expensive neuroimaging tools, such as MRI and PET. This paper reports on the results of a systematic review on the utilization of resting-state EEG signals for AD diagnosis and progression assessment. Recent journal articles obtained from four major bibliographic databases were analyzed. A total of 112 journal articles published from January 2010 to February 2018 were meticulously reviewed, and relevant aspects of these papers were compared across articles to provide a general overview of the research on this noninvasive AD diagnosis technique. Finally, recommendations for future studies with resting-state EEG were presented to improve and facilitate the knowledge transfer among research groups.
Collapse
Affiliation(s)
- Raymundo Cassani
- Institut national de la recherche scientifique (INRS-EMT), University of Québec, Montreal, Canada
| | - Mar Estarellas
- Institut national de la recherche scientifique (INRS-EMT), University of Québec, Montreal, Canada
- Department of Bioengineering, Imperial College London, London, UK
| | - Rodrigo San-Martin
- Center for Mathematics, Computation and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Francisco J. Fraga
- Engineering, Modeling and Applied Social Sciences Center, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Tiago H. Falk
- Institut national de la recherche scientifique (INRS-EMT), University of Québec, Montreal, Canada
| |
Collapse
|
24
|
Bhavsar R, Sun Y, Helian N, Davey N, Mayor D, Steffert T. The Correlation between EEG Signals as Measured in Different Positions on Scalp Varying with Distance. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.procs.2018.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Babiloni C, Del Percio C, Lizio R, Noce G, Cordone S, Lopez S, Soricelli A, Ferri R, Pascarelli MT, Nobili F, Arnaldi D, Aarsland D, Orzi F, Buttinelli C, Giubilei F, Onofrj M, Stocchi F, Stirpe P, Fuhr P, Gschwandtner U, Ransmayr G, Caravias G, Garn H, Sorpresi F, Pievani M, Frisoni GB, D'Antonio F, De Lena C, Güntekin B, Hanoğlu L, Başar E, Yener G, Emek-Savaş DD, Triggiani AI, Franciotti R, De Pandis MF, Bonanni L. Abnormalities of cortical neural synchronization mechanisms in patients with dementia due to Alzheimer's and Lewy body diseases: an EEG study. Neurobiol Aging 2017; 55:143-158. [PMID: 28454845 DOI: 10.1016/j.neurobiolaging.2017.03.030] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 03/24/2017] [Accepted: 03/26/2017] [Indexed: 12/15/2022]
Abstract
The aim of this retrospective exploratory study was that resting state eyes-closed electroencephalographic (rsEEG) rhythms might reflect brain arousal in patients with dementia due to Alzheimer's disease dementia (ADD), Parkinson's disease dementia (PDD), and dementia with Lewy body (DLB). Clinical and rsEEG data of 42 ADD, 42 PDD, 34 DLB, and 40 healthy elderly (Nold) subjects were available in an international archive. Demography, education, and Mini-Mental State Evaluation score were not different between the patient groups. Individual alpha frequency peak (IAF) determined the delta, theta, alpha 1, alpha 2, and alpha 3 frequency bands. Fixed beta 1, beta 2, and gamma bands were also considered. rsEEG cortical sources were estimated by means of the exact low-resolution brain electromagnetic source tomography and were then classified across individuals, on the basis of the receiver operating characteristic curves. Compared to Nold, IAF showed marked slowing in PDD and DLB and moderate slowing in ADD. Furthermore, all patient groups showed lower posterior alpha 2 source activities. This effect was dramatic in ADD, marked in DLB, and moderate in PDD. These groups also showed higher occipital delta source activities, but this effect was dramatic in PDD, marked in DLB, and moderate in ADD. The posterior delta and alpha sources allowed good classification accuracy (approximately 0.85-0.90) between the Nold subjects and patients, and between ADD and PDD patients. In quiet wakefulness, delta and alpha sources unveiled different spatial and frequency features of the cortical neural synchronization underpinning brain arousal in ADD, PDD, and DLB patients. Future prospective cross-validation studies should test these rsEEG markers for clinical applications and drug discovery.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", University of Rome "La Sapienza", Rome, Italy; Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy.
| | | | - Roberta Lizio
- Department of Physiology and Pharmacology "Vittorio Erspamer", University of Rome "La Sapienza", Rome, Italy; Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | - Giuseppe Noce
- Department of Integrated Imaging, IRCCS SDN, Naples, Italy
| | - Susanna Cordone
- Department of Physiology and Pharmacology "Vittorio Erspamer", University of Rome "La Sapienza", Rome, Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology "Vittorio Erspamer", University of Rome "La Sapienza", Rome, Italy
| | - Andrea Soricelli
- Department of Integrated Imaging, IRCCS SDN, Naples, Italy; Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | - Raffaele Ferri
- Department of Neurology, IRCCS Oasi Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Maria Teresa Pascarelli
- Department of Neurology, IRCCS Oasi Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Flavio Nobili
- Department of Neuroscience (DiNOGMI), Clinical Neurology, University of Genoa and IRCCS AOU S Martino-IST, Genoa, Italy
| | - Dario Arnaldi
- Department of Neuroscience (DiNOGMI), Clinical Neurology, University of Genoa and IRCCS AOU S Martino-IST, Genoa, Italy
| | - Dag Aarsland
- Department of Old Age Psychiatry, King's College University, London, UK
| | - Francesco Orzi
- Department of Neuroscience, Mental Health and Sensory Organs, University of Rome "La Sapienza", Rome, Italy
| | - Carla Buttinelli
- Department of Neuroscience, Mental Health and Sensory Organs, University of Rome "La Sapienza", Rome, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, University of Rome "La Sapienza", Rome, Italy
| | - Marco Onofrj
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Fabrizio Stocchi
- Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | - Paola Stirpe
- Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | - Peter Fuhr
- Universitätsspital Basel, Abteilung Neurophysiologie, Basel, Switzerland
| | - Ute Gschwandtner
- Universitätsspital Basel, Abteilung Neurophysiologie, Basel, Switzerland
| | - Gerhard Ransmayr
- Department of Neurology and Psychiatry and Faculty of Medicine, Johannes Kepler University Linz, General Hospital of the City of Linz, Linz, Austria
| | - Georg Caravias
- Department of Neurology and Psychiatry and Faculty of Medicine, Johannes Kepler University Linz, General Hospital of the City of Linz, Linz, Austria
| | - Heinrich Garn
- AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | | | - Michela Pievani
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Fabrizia D'Antonio
- Department of Neurology and Psychiatry, Sapienza, University of Rome, Rome, Italy
| | - Carlo De Lena
- Department of Neurology and Psychiatry, Sapienza, University of Rome, Rome, Italy
| | - Bahar Güntekin
- Department of Biophysics, Istanbul Medipol University, Istanbul, Turkey
| | - Lutfu Hanoğlu
- Department of Neurology, University of Istanbul-Medipol, Istanbul, Turkey
| | - Erol Başar
- Department of Neurosciences, Dokuz Eylül University Medical School, Izmir, Turkey; Department of Neurology, Dokuz Eylül University Medical School, Izmir, Turkey
| | - Görsev Yener
- Department of Psychology, Dokuz Eylül University, Izmir, Turkey; Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - Derya Durusu Emek-Savaş
- Department of Psychology, Dokuz Eylül University, Izmir, Turkey; Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | | | - Raffaella Franciotti
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | | | - Laura Bonanni
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| |
Collapse
|