1
|
Livadiotis G, McComas DJ. The theory of thermodynamic relativity. Sci Rep 2024; 14:22641. [PMID: 39349645 PMCID: PMC11442665 DOI: 10.1038/s41598-024-72779-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
We introduce the theory of thermodynamic relativity, a unified theoretical framework for describing both entropies and velocities, and their respective physical disciplines of thermodynamics and kinematics, which share a surprisingly identical description with relativity. This is the first study to generalize relativity in a thermodynamic context, leading naturally to anisotropic and nonlinear adaptations of relativity; thermodynamic relativity constitutes a new path of generalization, as compared to the "traditional" passage from special to general theory based on curved spacetime. We show that entropy and velocity are characterized by three identical postulates, which provide the basis of a broader framework of relativity: (1) no privileged reference frame with zero value; (2) existence of an invariant and fixed value for all reference frames; and (3) existence of stationarity. The postulates lead to a unique way of addition for entropies and for velocities, called kappa-addition. We develop a systematic method of constructing a generalized framework of the theory of relativity, based on the kappa-addition formulation, which is fully consistent with both thermodynamics and kinematics. We call this novel and unified theoretical framework for simultaneously describing entropy and velocity "thermodynamic relativity". From the generality of the kappa-addition formulation, we focus on the cases corresponding to linear adaptations of special relativity. Then, we show how the developed thermodynamic relativity leads to the addition of entropies in nonextensive thermodynamics and the addition of velocities in Einstein's isotropic special relativity, as in two extreme cases, while intermediate cases correspond to a possible anisotropic adaptation of relativity. Using thermodynamic relativity for velocities, we start from the kappa-addition of velocities and construct the basic formulations of the linear anisotropic special relativity; e.g., the asymmetric Lorentz transformation, the nondiagonal metric, and the energy-momentum-velocity relationships. Then, we discuss the physical consequences of the possible anisotropy in known relativistic effects, such as, (i) matter-antimatter asymmetry, (ii) time dilation, and (iii) Doppler effect, and show how these might be used to detect and quantify a potential anisotropy.
Collapse
Affiliation(s)
- George Livadiotis
- Department of Astrophysical Sciences, Princeton University, Princeton, NJ, 08544, USA.
| | - David J McComas
- Department of Astrophysical Sciences, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
2
|
Yoon PH, López RA, Salem CS, Bonnell JW, Kim S. Non-Thermal Solar Wind Electron Velocity Distribution Function. ENTROPY (BASEL, SWITZERLAND) 2024; 26:310. [PMID: 38667863 PMCID: PMC11049069 DOI: 10.3390/e26040310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
The quiet-time solar wind electrons feature non-thermal characteristics when viewed from the perspective of their velocity distribution functions. They typically have an appearance of being composed of a denser thermal "core" population plus a tenuous energetic "halo" population. At first, such a feature was empirically fitted with the kappa velocity space distribution function, but ever since the ground-breaking work by Tsallis, the space physics community has embraced the potential implication of the kappa distribution as reflecting the non-extensive nature of the space plasma. From the viewpoint of microscopic plasma theory, the formation of the non-thermal electron velocity distribution function can be interpreted in terms of the plasma being in a state of turbulent quasi-equilibrium. Such a finding brings forth the possible existence of a profound inter-relationship between the non-extensive statistical state and the turbulent quasi-equilibrium state. The present paper further develops the idea of solar wind electrons being in the turbulent equilibrium, but, unlike the previous model, which involves the electrostatic turbulence near the plasma oscillation frequency (i.e., Langmuir turbulence), the present paper considers the impact of transverse electromagnetic turbulence, particularly, the turbulence in the whistler-mode frequency range. It is found that the coupling of spontaneously emitted thermal fluctuations and the background turbulence leads to the formation of a non-thermal electron velocity distribution function of the type observed in the solar wind during quiet times. This demonstrates that the whistler-range turbulence represents an alternative mechanism for producing the kappa-like non-thermal distribution, especially close to the Sun and in the near-Earth space environment.
Collapse
Affiliation(s)
- Peter H. Yoon
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Rodrigo A. López
- Research Center in the Intersection of Plasma Physics, Matter, and Complexity (Pmc), Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago 7600713, Chile;
| | - Chadi S. Salem
- Space Sciences Laboratory, University of California, Berkeley, CA 94720, USA; (C.S.S.); (J.W.B.)
| | - John W. Bonnell
- Space Sciences Laboratory, University of California, Berkeley, CA 94720, USA; (C.S.S.); (J.W.B.)
| | - Sunjung Kim
- Astronomy and Space Sciences, Kyung Hee University, Yongin 17104, Gyeonggi, Republic of Korea;
| |
Collapse
|
3
|
Livadiotis G, McComas DJ. Entropy defect in thermodynamics. Sci Rep 2023; 13:9033. [PMID: 37270648 DOI: 10.1038/s41598-023-36080-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023] Open
Abstract
This paper describes the physical foundations of the newly discovered "entropy defect" as a basic concept of thermodynamics. The entropy defect quantifies the change in entropy caused by the order induced in a system through the additional correlations among its constituents when two or more subsystems are assembled. This defect is closely analogous to the mass defect that arises when nuclear particle systems are assembled. The entropy defect determines how the entropy of the system compares to its constituent's entropies and stands on three fundamental properties: each constituent's entropy must be (i) separable, (ii) symmetric, and (iii) bounded. We show that these properties provide a solid foundation for the entropy defect and for generalizing thermodynamics to describe systems residing out of the classical thermal equilibrium, both in stationary and nonstationary states. In stationary states, the consequent thermodynamics generalizes the classical framework, which was based on the Boltzmann-Gibbs entropy and Maxwell-Boltzmann canonical distribution of particle velocities, into the respective entropy and canonical distribution associated with kappa distributions. In nonstationary states, the entropy defect similarly acts as a negative feedback, or reduction of the increase of entropy, preventing its unbounded growth toward infinity.
Collapse
Affiliation(s)
- George Livadiotis
- Department of Astrophysical Sciences, Princeton University, Princeton, NJ, 08540, USA.
| | - David J McComas
- Department of Astrophysical Sciences, Princeton University, Princeton, NJ, 08540, USA
| |
Collapse
|
4
|
Thermodynamic Definitions of Temperature and Kappa and Introduction of the Entropy Defect. ENTROPY 2021; 23:e23121683. [PMID: 34945989 PMCID: PMC8700829 DOI: 10.3390/e23121683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022]
Abstract
This paper develops explicit and consistent definitions of the independent thermodynamic properties of temperature and the kappa index within the framework of nonextensive statistical mechanics and shows their connection with the formalism of kappa distributions. By defining the "entropy defect" in the composition of a system, we show how the nonextensive entropy of systems with correlations differs from the sum of the entropies of their constituents of these systems. A system is composed extensively when its elementary subsystems are independent, interacting with no correlations; this leads to an extensive system entropy, which is simply the sum of the subsystem entropies. In contrast, a system is composed nonextensively when its elementary subsystems are connected through long-range interactions that produce correlations. This leads to an entropy defect that quantifies the missing entropy, analogous to the mass defect that quantifies the mass (energy) associated with assembling subatomic particles. We develop thermodynamic definitions of kappa and temperature that connect with the corresponding kinetic definitions originated from kappa distributions. Finally, we show that the entropy of a system, composed by a number of subsystems with correlations, is determined using both discrete and continuous descriptions, and find: (i) the resulted entropic form expressed in terms of thermodynamic parameters; (ii) an optimal relationship between kappa and temperature; and (iii) the correlation coefficient to be inversely proportional to the temperature logarithm.
Collapse
|
5
|
Livadiotis G. Nonextensive Statistical Mechanics: Equivalence Between Dual Entropy and Dual Probabilities. ENTROPY 2020; 22:e22060594. [PMID: 33286366 PMCID: PMC7517129 DOI: 10.3390/e22060594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 11/27/2022]
Abstract
The concept of duality of probability distributions constitutes a fundamental “brick” in the solid framework of nonextensive statistical mechanics—the generalization of Boltzmann–Gibbs statistical mechanics under the consideration of the q-entropy. The probability duality is solving old-standing issues of the theory, e.g., it ascertains the additivity for the internal energy given the additivity in the energy of microstates. However, it is a rather complex part of the theory, and certainly, it cannot be trivially explained along the Gibb’s path of entropy maximization. Recently, it was shown that an alternative picture exists, considering a dual entropy, instead of a dual probability. In particular, the framework of nonextensive statistical mechanics can be equivalently developed using q- and 1/q- entropies. The canonical probability distribution coincides again with the known q-exponential distribution, but without the necessity of the duality of ordinary-escort probabilities. Furthermore, it is shown that the dual entropies, q-entropy and 1/q-entropy, as well as, the 1-entropy, are involved in an identity, useful in theoretical development and applications.
Collapse
Affiliation(s)
- George Livadiotis
- Division of Space Science and Engineering, Southwest Research Institute, San Antonio, TX 78238, USA
| |
Collapse
|
6
|
Yoon PH. Thermodynamic, Non-Extensive, or Turbulent Quasi-Equilibrium for the Space Plasma Environment. ENTROPY 2019. [PMCID: PMC7515349 DOI: 10.3390/e21090820] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Boltzmann–Gibbs (BG) entropy has been used in a wide variety of problems for more than a century. It is well known that BG entropy is additive and extensive, but for certain systems such as those dictated by long-range interactions, it is speculated that the entropy must be non-additive and non-extensive. Tsallis entropy possesses these characteristics, and is parameterized by a variable q (q=1 being the classic BG limit), but unless q is determined from microscopic dynamics, the model remains a phenomenological tool. To this day, very few examples have emerged in which q can be computed from first principles. This paper shows that the space plasma environment, which is governed by long-range collective electromagnetic interaction, represents a perfect example for which the q parameter can be computed from microphysics. By taking the electron velocity distribution function measured in the heliospheric environment into account, and considering them to be in a quasi-equilibrium state with electrostatic turbulence known as quasi-thermal noise, it is shown that the value corresponding to q=9/13=0.6923, or alternatively q=5/9=0.5556, may be deduced. This prediction is verified against observations made by spacecraft, and it is shown to be in excellent agreement. This paper constitutes an overview of recent developments regarding the non-equilibrium statistical mechanical approach to understanding the non-extensive nature of space plasma, although some recent new developments are also discussed.
Collapse
Affiliation(s)
- Peter H. Yoon
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA;
- Korea Astronomy and Space Science Institute, Daejeon 34055, Korea
| |
Collapse
|
7
|
Kappa Distributions: Statistical Physics and Thermodynamics of Space and Astrophysical Plasmas. UNIVERSE 2018. [DOI: 10.3390/universe4120144] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Kappa distributions received impetus as they provide efficient modelling of the observed particle distributions in space and astrophysical plasmas throughout the heliosphere. This paper presents (i) the connection of kappa distributions with statistical mechanics, by maximizing the associated q-entropy under the constraints of the canonical ensemble within the framework of continuous description; (ii) the derivation of q-entropy from first principles that characterize space plasmas, the additivity of energy, and entropy; and (iii) the derivation of the characteristic first order differential equation, whose solution is the kappa distribution function.
Collapse
|
8
|
Livadiotis G. Long-Term Independence of Solar Wind Polytropic Index on Plasma Flow Speed. ENTROPY 2018; 20:e20100799. [PMID: 33265886 PMCID: PMC7512360 DOI: 10.3390/e20100799] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/05/2022]
Abstract
The paper derives the polytropic indices over the last two solar cycles (years 1995–2017) for the solar wind proton plasma near Earth (~1 AU). We use ~92-s datasets of proton plasma moments (speed, density, and temperature), measured from the Solar Wind Experiment instrument onboard Wind spacecraft, to estimate the moving averages of the polytropic index, as well as their weighted means and standard errors as a function of the solar wind speed and the year of measurements. The derived long-term behavior of the polytropic index agrees with the results of other previous methods. In particular, we find that the polytropic index remains quasi-constant with respect to the plasma flow speed, in agreement with earlier analyses of solar wind plasma. It is shown that most of the fluctuations of the polytropic index appear in the fast solar wind. The polytropic index remains quasi-constant, despite the frequent entropic variations. Therefore, on an annual basis, the polytropic index of the solar wind proton plasma near ~1 AU can be considered independent of the plasma flow speed. The estimated all-year weighted mean and its standard error is γ = 1.86 ± 0.09.
Collapse
Affiliation(s)
- George Livadiotis
- Division of Space Science and Engineering, Southwest Research Institute, San Antonio, TX 78238, USA
| |
Collapse
|