1
|
Chen W, Zhan L, Jia T. Sex Differences in Hierarchical and Modular Organization of Functional Brain Networks: Insights from Hierarchical Entropy and Modularity Analysis. ENTROPY (BASEL, SWITZERLAND) 2024; 26:864. [PMID: 39451941 PMCID: PMC11507829 DOI: 10.3390/e26100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Existing studies have demonstrated significant sex differences in the neural mechanisms of daily life and neuropsychiatric disorders. The hierarchical organization of the functional brain network is a critical feature for assessing these neural mechanisms. But the sex differences in hierarchical organization have not been fully investigated. Here, we explore whether the hierarchical structure of the brain network differs between females and males using resting-state fMRI data. We measure the hierarchical entropy and the maximum modularity of each individual, and identify a significant negative correlation between the complexity of hierarchy and modularity in brain networks. At the mean level, females show higher modularity, whereas males exhibit a more complex hierarchy. At the consensus level, we use a co-classification matrix to perform a detailed investigation of the differences in the hierarchical organization between sexes and observe that the female group and the male group exhibit different interaction patterns of brain regions in the dorsal attention network (DAN) and visual network (VIN). Our findings suggest that the brains of females and males employ different network topologies to carry out brain functions. In addition, the negative correlation between hierarchy and modularity implies a need to balance the complexity in the hierarchical organization of the brain network, which sheds light on future studies of brain functions.
Collapse
Affiliation(s)
| | | | - Tao Jia
- College of Computer and Information Science, Southwest University, Chongqing 400715, China; (W.C.); (L.Z.)
| |
Collapse
|
2
|
Zhao CL, Hou W, Jia Y, Sahakian BJ, Luo Q. Sex differences of signal complexity at resting-state functional magnetic resonance imaging and their associations with the estrogen-signaling pathway in the brain. Cogn Neurodyn 2024; 18:973-986. [PMID: 38826661 PMCID: PMC11143120 DOI: 10.1007/s11571-023-09954-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/27/2023] [Accepted: 03/08/2023] [Indexed: 06/04/2024] Open
Abstract
Sex differences in the brain have been widely reported and may hold the key to elucidating sex differences in many medical conditions and drug response. However, the molecular correlates of these sex differences in structural and functional brain measures in the human brain remain unclear. Herein, we used sample entropy (SampEn) to quantify the signal complexity of resting-state functional magnetic resonance imaging (rsfMRI) in a large neuroimaging cohort (N = 1,642). The frontoparietal control network and the cingulo-opercular network had high signal complexity while the cerebellar and sensory motor networks had low signal complexity in both men and women. Compared with those in male brains, we found greater signal complexity in all functional brain networks in female brains with the default mode network exhibiting the largest sex difference. Using the gene expression data in brain tissues, we identified genes that were significantly associated with sex differences in brain signal complexity. The significant genes were enriched in the gene sets that were differentially expressed between the brain cortex and other tissues, the estrogen-signaling pathway, and the biological function of neural plasticity. In particular, the G-protein-coupled estrogen receptor 1 gene in the estrogen-signaling pathway was expressed more in brain regions with greater sex differences in SampEn. In conclusion, greater complexity in female brains may reflect the interactions between sex hormone fluctuations and neuromodulation of estrogen in women. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-023-09954-y.
Collapse
Affiliation(s)
- Cheng-li Zhao
- College of Science, National University of Defense Technology, Changsha, 410073 China
| | - Wenjie Hou
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433 China
- Center for Computational Psychiatry, MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Human Phenome Institute, Fudan University, Shanghai, 200438 China
| | - Yanbing Jia
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471000 China
| | - Barbara J. Sahakian
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB UK
| | - the DIRECT Consortium
- College of Science, National University of Defense Technology, Changsha, 410073 China
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433 China
- Center for Computational Psychiatry, MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Human Phenome Institute, Fudan University, Shanghai, 200438 China
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471000 China
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB UK
| | - Qiang Luo
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433 China
- Center for Computational Psychiatry, MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Human Phenome Institute, Fudan University, Shanghai, 200438 China
| |
Collapse
|
3
|
Murphy N, Tamman AJF, Lijffijt M, Amarneh D, Iqbal S, Swann A, Averill LA, O'Brien B, Mathew SJ. Neural complexity EEG biomarkers of rapid and post-rapid ketamine effects in late-life treatment-resistant depression: a randomized control trial. Neuropsychopharmacology 2023; 48:1586-1593. [PMID: 37076582 PMCID: PMC10516885 DOI: 10.1038/s41386-023-01586-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/21/2023]
Abstract
Ketamine is an effective intervention for treatment-resistant depression (TRD), including late-in-life (LL-TRD). The proposed mechanism of antidepressant effects of ketamine is a glutamatergic surge, which can be measured by electroencephalogram (EEG) gamma oscillations. Yet, non-linear EEG biomarkers of ketamine effects such as neural complexity are needed to capture broader systemic effects, represent the level of organization of synaptic communication, and elucidate mechanisms of action for treatment responders. In a secondary analysis of a randomized control trial, we investigated two EEG neural complexity markers (Lempel-Ziv complexity [LZC] and multiscale entropy [MSE]) of rapid (baseline to 240 min) and post-rapid ketamine (24 h and 7 days) effects after one 40-min infusion of IV ketamine or midazolam (active control) in 33 military veterans with LL-TRD. We also studied the relationship between complexity and Montgomery-Åsberg Depression Rating Scale score change at 7 days post-infusion. We found that LZC and MSE both increased 30 min post-infusion, with effects not localized to a single timescale for MSE. Post-rapid effects of reduced complexity with ketamine were observed for MSE. No relationship was observed between complexity and reduction in depressive symptoms. Our findings support the hypothesis that a single sub-anesthetic ketamine infusion has time-varying effects on system-wide contributions to the evoked glutamatergic surge in LL-TRD. Further, changes to complexity were observable outside the time-window previously shown for effects on gamma oscillations. These preliminary results have clinical implications in providing a functional marker of ketamine that is non-linear, amplitude-independent, and represents larger dynamic properties, providing strong advantages over linear measures in highlighting ketamine's effects.
Collapse
Affiliation(s)
- Nicholas Murphy
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA
- The Menninger Clinic, Houston, TX, USA
| | - Amanda J F Tamman
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA.
| | - Marijn Lijffijt
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA
- Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Dania Amarneh
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA
| | - Sidra Iqbal
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA
- Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Alan Swann
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA
- Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Lynnette A Averill
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA
- Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Brittany O'Brien
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA
- The Menninger Clinic, Houston, TX, USA
| | - Sanjay J Mathew
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA
- The Menninger Clinic, Houston, TX, USA
- Michael E. DeBakey VA Medical Center, Houston, TX, USA
| |
Collapse
|
4
|
Fernández A, Ramírez-Toraño F, Bruña R, Zuluaga P, Esteba-Castillo S, Abásolo D, Moldenhauer F, Shumbayawonda E, Maestú F, García-Alba J. Brain signal complexity in adults with Down syndrome: Potential application in the detection of mild cognitive impairment. Front Aging Neurosci 2022; 14:988540. [PMID: 36337705 PMCID: PMC9631477 DOI: 10.3389/fnagi.2022.988540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Down syndrome (DS) is considered the most frequent cause of early-onset Alzheimer’s disease (AD), and the typical pathophysiological signs are present in almost all individuals with DS by the age of 40. Despite of this evidence, the investigation on the pre-dementia stages in DS is scarce. In the present study we analyzed the complexity of brain oscillatory patterns and neuropsychological performance for the characterization of mild cognitive impairment (MCI) in DS. Materials and methods Lempel-Ziv complexity (LZC) values from resting-state magnetoencephalography recordings and the neuropsychological performance in 28 patients with DS [control DS group (CN-DS) (n = 14), MCI group (MCI-DS) (n = 14)] and 14 individuals with typical neurodevelopment (CN-no-DS) were analyzed. Results Lempel-Ziv complexity was lowest in the frontal region within the MCI-DS group, while the CN-DS group showed reduced values in parietal areas when compared with the CN-no-DS group. Also, the CN-no-DS group exhibited the expected pattern of significant increase of LZC as a function of age, while MCI-DS cases showed a decrease. The combination of reduced LZC values and a divergent trajectory of complexity evolution with age, allowed the discrimination of CN-DS vs. MCI-DS patients with a 92.9% of sensitivity and 85.7% of specificity. Finally, a pattern of mnestic and praxic impairment was significantly associated in MCI-DS cases with the significant reduction of LZC values in frontal and parietal regions (p = 0.01). Conclusion Brain signal complexity measured with LZC is reduced in DS and its development with age is also disrupted. The combination of both features might assist in the detection of MCI within this population.
Collapse
Affiliation(s)
- Alberto Fernández
- Department of Legal Medicine, Psychiatry and Pathology, Universidad Complutense de Madrid, Madrid, Spain
- Institute of Sanitary Investigation (IdISSC), Hospital Universitario San Carlos, Madrid, Spain
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
| | - Federico Ramírez-Toraño
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain
| | - Ricardo Bruña
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Radiology, Universidad Complutense de Madrid, Madrid, Spain
- Department of Industrial Engineering & IUNE & ITB, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Pilar Zuluaga
- Statistics & Operations Research Department, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Susanna Esteba-Castillo
- Neurodevelopmental Group, Girona Biomedical Research Institute-IDIBGI, Institute of Health Assistance (IAS), Parc Hospitalari Martí i Julià, Girona, Spain
| | - Daniel Abásolo
- Centre for Biomedical Engineering, School of Mechanical Engineering Sciences, University of Surrey, Guildford, United Kingdom
| | - Fernando Moldenhauer
- Adult Down Syndrome Unit, Internal Medicine Department, Health Research Institute, Hospital Universitario de La Princesa, Madrid, Spain
| | - Elizabeth Shumbayawonda
- Centre for Biomedical Engineering, School of Mechanical Engineering Sciences, University of Surrey, Guildford, United Kingdom
| | - Fernando Maestú
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain
| | - Javier García-Alba
- Department of Research and Psychology in Education, Universidad Complutense de Madrid, Madrid, Spain
- *Correspondence: Javier García-Alba,
| |
Collapse
|
5
|
Bruña R, Maestú F, López-Sanz D, Bagic A, Cohen AD, Chang YF, Cheng Y, Doman J, Huppert T, Kim T, Roush RE, Snitz BE, Becker JT. Sex Differences in Magnetoencephalography-Identified Functional Connectivity in the Human Connectome Project Connectomics of Brain Aging and Dementia Cohort. Brain Connect 2021; 12:561-570. [PMID: 34726478 PMCID: PMC9419974 DOI: 10.1089/brain.2021.0059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: The human brain shows modest traits of sexual dimorphism, with the female brain, on average, 10% smaller than the male brain. These differences do not imply a lowered cognitive performance, but suggest a more optimal brain organization in women. Here we evaluate the patterns of functional connectivity (FC) in women and men from the Connectomics of Brain Aging and Dementia sample. Methods: We used phase locking values to calculate FC from the magnetoencephalography time series in a sample of 138 old adults (87 females and 51 males). We compared the FC patterns between sexes, with the intention of detecting regions with different levels of connectivity. Results: We found a frontal cluster, involving anterior cingulate and the medial frontal lobe, where women showed higher FC values than men. Involved connections included the following: (1) medial parietal areas, such as posterior cingulate cortices and precunei; (2) right insula; and (3) medium cingulate and paracingulate cortices. Moreover, these differences persisted when considering only cognitively intact individuals, but not when considering only cognitively impaired individuals. Discussion: Increased anteroposterior FC has been identified as a biomarker for increased risk of developing cognitive impairment or dementia. In our study, cognitively intact women showed higher levels of FC than their male counterparts. This result suggests that neurodegenerative processes could be taking place in these women, but the changes are undetected by current diagnosis tools. FC, as measured here, might be valuable for early identification of this neurodegeneration.
Collapse
Affiliation(s)
- Ricardo Bruña
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.,Department of Experimental Psychology, Universidad Complutense de Madrid, Pozuelo de Alarcón, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.,Department of Experimental Psychology, Universidad Complutense de Madrid, Pozuelo de Alarcón, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - David López-Sanz
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.,Department of Psychobiology, Universidad Complutense de Madrid, Madrid, Spain
| | - Anto Bagic
- Department of Psychiatry, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Statistics, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ann D Cohen
- Department of Neurosurgery, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yue-Fang Chang
- Department of Neurosurgery, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yu Cheng
- Department of Statistics, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Biostatistics, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jack Doman
- Department of Neurosurgery, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ted Huppert
- Department of Electrical Engineering, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tae Kim
- Department of Radiology, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rebecca E Roush
- Department of Psychiatry, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Beth E Snitz
- Department of Psychiatry, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - James T Becker
- Department of Psychiatry, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Neurology, and The University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Psychology, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|