1
|
Jan YK, Lin CF, Liao F, Singh NB. Editorial: Nonlinear dynamics and complex patterns in the human musculoskeletal system and movement. Front Bioeng Biotechnol 2023; 11:1339376. [PMID: 38162178 PMCID: PMC10756663 DOI: 10.3389/fbioe.2023.1339376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024] Open
Affiliation(s)
- Yih-Kuen Jan
- Rehabilitation Engineering Lab, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Cheng-Feng Lin
- Department of Physical Therapy, National Cheng Kung University, Tainan, Taiwan
| | - Fuyuan Liao
- Department of Biomedical Engineering, Xi’an Technological University, Xi’an, China
| | - Navrag B. Singh
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Singapore-ETH Centre, Future Health Technologies Program, CREATE Campus, Singapore, Singapore
| |
Collapse
|
2
|
Saraiva M, Vilas-Boas JP, Fernandes OJ, Castro MA. Effects of Motor Task Difficulty on Postural Control Complexity during Dual Tasks in Young Adults: A Nonlinear Approach. SENSORS (BASEL, SWITZERLAND) 2023; 23:628. [PMID: 36679423 PMCID: PMC9866022 DOI: 10.3390/s23020628] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Few studies have evaluated the effect of a secondary motor task on the standing posture based on nonlinear analysis. However, it is helpful to extract information related to the complexity, stability, and adaptability to the environment of the human postural system. This study aimed to analyze the effect of two motor tasks with different difficulty levels in motor performance complexity on the static standing posture in healthy young adults. Thirty-five healthy participants (23.08 ± 3.92 years) performed a postural single task (ST: keep a quiet standing posture) and two motor dual tasks (DT). i.e., mot-DT(A)—perform the ST while performing simultaneously an easy motor task (taking a smartphone out of a bag, bringing it to the ear, and putting it back in the bag)—and mot-DT(T)—perform the ST while performing a concurrent difficult motor task (typing on the smartphone keyboard). The approximate entropy (ApEn), Lyapunov exponent (LyE), correlation dimension (CoDim), and fractal dimension (detrending fluctuation analysis, DFA) for the mediolateral (ML) and anterior-posterior (AP) center-of-pressure (CoP) displacement were measured with a force plate while performing the tasks. A significant difference was found between the two motor dual tasks in ApEn, DFA, and CoDim-AP (p < 0.05). For the ML CoP direction, all nonlinear variables in the study were significantly different (p < 0.05) between ST and mot-DT(T), showing impairment in postural control during mot-DT(T) compared to ST. Differences were found across ST and mot-DT(A) in ApEn-AP and DFA (p < 0.05). The mot-DT(T) was associated with less effectiveness in postural control, a lower number of degrees of freedom, less complexity and adaptability of the dynamic system than the postural single task and the mot-DT(A).
Collapse
Affiliation(s)
- Marina Saraiva
- RoboCorp Laboratory, i2A, Polytechnic Institute of Coimbra, 3046-854 Coimbra, Portugal
- Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - João Paulo Vilas-Boas
- Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
- LABIOMEP-UP, Faculty of Sports and CIFI2D, University of Porto, 4200-450 Porto, Portugal
| | - Orlando J. Fernandes
- Sport and Health Department, School of Health and Human Development, University of Évora, 7000-671 Évora, Portugal
- Comprehensive Health Research Center (CHRC), University of Évora, 7000-671 Évora, Portugal
| | - Maria António Castro
- RoboCorp Laboratory, i2A, Polytechnic Institute of Coimbra, 3046-854 Coimbra, Portugal
- Department of Mechanical Engineering, University of Coimbra, CEMMPRE, 3030-788 Coimbra, Portugal
- Sector of Physiotherapy, School of Health Sciences, Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal
| |
Collapse
|
3
|
Brachman A, Sobota G, Bacik B. The influence of walking speed and effects of signal processing methods on the level of human gait regularity during treadmill walking. BMC Sports Sci Med Rehabil 2022; 14:209. [PMID: 36496418 PMCID: PMC9741790 DOI: 10.1186/s13102-022-00600-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND In recent years the use of sample entropy (SampEn) to evaluate the complexity of the locomotor system in human gait data has gained in popularity. However, it has been suggested that SampEn is sensitive to various input parameters and signal preprocessing methods. This study quantified the effects of different temporal and spatial normalization approaches and various lengths of the template vector (m) on SampEn calculations. The discriminatory ability of SampEn was studied by comparing two walking conditions. METHODS Twenty-three participants (seven males, 55.7 ± 8.5 years, 165.7 ± 7.9 cm, 80.5 ± 16.7 kg) walked on a treadmill with preferred (Vpref) and maximum (Vmax) speed. Data were segmented and resampled (SEGM), resampled and spatially normalized (NORM), resampled and detrended (ZERO). RESULTS For vertical ground reaction force (vGRF) and center of pressure in anterio-posterior direction (COPap), in both walking conditions, SampEn was generally sensitive to the vector length and not to the data processing, except for COPap in ZERO, m = 2, 4. For the COPml SampEn behaved oppositely, it was sensitive to preprocessing method and not to the m length. The regularity of COPap and vGRF in all processed signals increased in Vmax condition. For the COPml only two signals, WHOLE and ZERO, revealed increased complexity caused by more demanding walking conditions. CONCLUSIONS SampEn was able to discriminate between different walking conditions in all analyzed variables, but not in all signals. Depending on evaluated variable, SampEn was susceptible in different way for the m level and processing method. Hence, these should be checked and selected for each variable independently. For future studies evaluating influence of walking velocity on COP and vGRF regularity during treadmill walking it is advised to use raw time series. Furthermore, to maintain template vector which represents biological relevance it is advised to detect highest frequencies present in analyzed signals and evaluate minimal time interval which can reflect change caused by response of a neuromuscular system. During evaluating treadmill walking measured with 100 Hz sampling frequency it is recommended to adopt m from 6 to 10, when average stride time is up to about 1 s.
Collapse
Affiliation(s)
- Anna Brachman
- grid.445174.7Institute of Sport Sciences, Department of Biomechanics, The Jerzy Kukuczka Academy of Physical Education, 72a Mikolowska, Katowice, Poland
| | - Grzegorz Sobota
- grid.445174.7Institute of Sport Sciences, Department of Biomechanics, The Jerzy Kukuczka Academy of Physical Education, 72a Mikolowska, Katowice, Poland
| | - Bogdan Bacik
- grid.445174.7Institute of Sport Sciences, Department of Biomechanics, The Jerzy Kukuczka Academy of Physical Education, 72a Mikolowska, Katowice, Poland
| |
Collapse
|
4
|
Cheng J, Zeng Q, Lai J, Zhang X. Effects of arch support doses on the center of pressure and pressure distribution of running using statistical parametric mapping. Front Bioeng Biotechnol 2022; 10:1051747. [PMID: 36479433 PMCID: PMC9719983 DOI: 10.3389/fbioe.2022.1051747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/09/2022] [Indexed: 08/06/2024] Open
Abstract
Insoles with an arch support have been used to address biomechanical risk factors of running. However, the relationship between the dose of support and running biomechanics remains unclear. The purpose of this study was to determine the effects of changing arch support doses on the center of pressure (COP) and pressure mapping using statistical parametric mapping (SPM). Nine arch support variations (3 heights * 3 widths) and a flat insole control were tested on fifteen healthy recreational runners using a 1-m Footscan pressure plate. The medial-lateral COP (COPML) coordinates and the total COP velocity (COPVtotal) were calculated throughout the entirety of stance. One-dimensional and two-dimensional SPM were performed to assess differences between the arch support and control conditions for time series of COP variables and pressure mapping at a pixel level, respectively. Two-way ANOVAs were performed to test the main effect of the arch support height and width, and their interaction on the peak values of the COPVtotal. The results showed that the COPVtotal during the forefoot contact and forefoot push off phases was increased by arch supports, while the COP medial-lateral coordinates remained unchanged. There was a dose-response effect of the arch support height on peak values of the COPVtotal, with a higher support increasing the first and third valleys but decreasing the third peak of the COPVtotal. Meanwhile, a higher arch support height shifted the peak pressure from the medial forefoot and rearfoot to the medial arch. It is concluded that changing arch support doses, primarily the height, systematically altered the COP velocities and peak plantar pressure at a pixel level during running. When assessing subtle modifications in the arch support, the COP velocity was a more sensitive variable than COP coordinates. SPM provides a high-resolution view of pressure comparisons, and is recommended for future insole/footwear investigations to better understand the underlying mechanisms and improve insole design.
Collapse
Affiliation(s)
- Jiale Cheng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Qing Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Jiaqi Lai
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Xianyi Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Abstract
Various walking speeds may induce different responses on the plantar pressure patterns. Current methods used to analyze plantar pressure patterns are linear and ignore nonlinear features. The purpose of this study was to analyze the complexity of plantar pressure images after walking at various speeds using nonlinear bidimensional multiscale entropy (MSE2D). Twelve participants (age: 27.1 ± 5.8 years; height: 170.3 ± 10.0 cm; and weight: 63.5 ± 13.5 kg) were recruited for walking at three speeds (slow at 1.8 mph, moderate at 3.6 mph, and fast at 5.4 mph) for 20 minutes. A plantar pressure measurement system was used to measure plantar pressure patterns. Complexity index (CI), a summation of MSE2D from all time scales, was used to quantify the changes of complexity of plantar pressure images. The analysis of variance with repeated measures and Fisher’s least significant difference correction were used to examine the results of this study. The results showed that CI of plantar pressure images of 1.8 mph (1.780) was significantly lower compared with 3.6 (1.790) and 5.4 mph (1.792). The results also showed that CI significantly increased from the 1st min (1.780) to the 10th min (1.791) and 20th min (1.791) with slow walking (1.8 mph). Our results indicate that slow walking at 1.8 mph may not be good for postural control compared with moderate walking (3.6 mph) and fast walking (5.4 mph). This study demonstrates that bidimensional multiscale entropy is able to quantify complexity changes of plantar pressure images after different walking speeds.
Collapse
|
6
|
Zhu X, Zhang K, He L, Liao F, Ren Y, Jan YK. Spectral analysis of blood flow oscillations to assess the plantar skin blood flow regulation in response to preconditioning local vibrations. Biorheology 2021; 58:39-49. [PMID: 33896803 DOI: 10.3233/bir-201011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Local vibration has shown promise in improving skin blood flow and wound healing. However, the underlying mechanism of local vibration as a preconditioning intervention to alter plantar skin blood flow after walking is unclear. OBJECTIVE The objective was to use wavelet analysis of skin blood flow oscillations to investigate the effect of preconditioning local vibration on plantar tissues after walking. METHODS A double-blind, repeated measures design was tested in 10 healthy participants. The protocol included 10-min baseline, 10-min local vibrations (100 Hz or sham), 10-min walking, and 10-min recovery periods. Skin blood flow was measured over the first metatarsal head of the right foot during the baseline and recovery periods. Wavelet amplitudes after walking were expressed as the ratio of the wavelet amplitude before walking. RESULTS The results showed the significant difference in the metabolic (vibration 10.06 ± 1.97, sham 5.78 ± 1.53, p < 0.01) and neurogenic (vibration 7.45 ± 1.54, sham 4.78 ± 1.22, p < 0.01) controls. There were no significant differences in the myogenic, respiratory and cardiac controls between the preconditioning local vibration and sham conditions. CONCLUSIONS Our results showed that preconditioning local vibration altered the normalization rates of plantar skin blood flow after walking by stimulating the metabolic and neurogenic controls.
Collapse
Affiliation(s)
- Xiaotong Zhu
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Keying Zhang
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Li He
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Fuyuan Liao
- Department of Biomedical Engineering, Xi'an Technological University, Xi'an, China
| | - Yuanchun Ren
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Yih-Kuen Jan
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, USA.,Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| |
Collapse
|
7
|
Sun J, Hu X, Peng S, Peng CK, Ma Y. Automatic classification of excitation location of snoring sounds. J Clin Sleep Med 2021; 17:1031-1038. [PMID: 33560203 DOI: 10.5664/jcsm.9094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
STUDY OBJECTIVES For surgical treatment of patients with obstructive sleep apnea-hypopnea syndrome, it is crucial to locate accurately the obstructive sites in the upper airway; however, noninvasive methods for locating the obstructive sites have not been well explored. Snoring, as the cardinal symptom of obstructive sleep apnea-hypopnea syndrome, should contain information that reflects the state of the upper airway. Through the classification of snores produced at four different locations, this study aimed to test the hypothesis that snores generated by various obstructive sites differ. METHODS We trained and tested our model on a public data set that comprised 219 participants. For each snore episode, an acoustic and a physiological feature were extracted and concatenated, forming a 59-dimensional fusion feature. A principal component analysis and a support machine vector were used for dimensional reduction and snore classification. The performance of the proposed model was evaluated using several metrics: sensitivity, precision, specificity, area under the receiver operating characteristic curve, and F1 score. RESULTS The unweighted average values of sensitivity, precision, specificity, area under the curve, and F1 were 86.36%, 89.09%, 96.4%, 87.9%, and 87.63%, respectively. The model achieved 98.04%, 80.56%, 72.73%, and 94.12% sensitivity for types V (velum), O (oropharyngeal), T (tongue), and E (epiglottis) snores. CONCLUSIONS The characteristics of snores are related to the state of the upper airway. The machine-learning-based model can be used to locate the vibration sites in the upper airway.
Collapse
Affiliation(s)
- Jingpeng Sun
- Institute of Automation, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China.,Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Xiyuan Hu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, People's Republic of China
| | - Silong Peng
- Institute of Automation, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Chung-Kang Peng
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Yan Ma
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
8
|
Wang W, Yang K, Zhu Y. Optimal Frequency and Amplitude of Vertical Viewpoint Oscillation for Improving Vection Strength and Reducing Neural Constrains on Gait. ENTROPY (BASEL, SWITZERLAND) 2021; 23:541. [PMID: 33924864 PMCID: PMC8145014 DOI: 10.3390/e23050541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/25/2022]
Abstract
Inducing self-motion illusions referred as vection are critical for improving the sensation of walking in virtual environments (VE). Adding viewpoint oscillations to a constant forward velocity in VE is effective for improving vection strength under static conditions. However, the effects of oscillation frequency and amplitude on vection strength under treadmill walking conditions are still unclear. Besides, due to the visuomotor entrainment mechanism, these visual oscillations would affect gait patterns and be detrimental for achieving natural walking if not properly designed. This study was aimed at determining the optimal frequency and amplitude of vertical viewpoint oscillations for improving vection strength and reducing gait constraints. Seven subjects walked on a treadmill while watching a visual scene. The visual scene presented a constant forward velocity equal to the treadmill velocity with different vertical viewpoint oscillations added. Five oscillation patterns with different combinations of frequency and amplitude were tested. Subjects gave verbal ratings of vection strength. The mediolateral (M-L) center of pressure (CoP) complexity was calculated to indicate gait constraints. After the experiment, subjects were asked to give the best and the worst oscillation pattern based on their walking experience. The oscillation frequency and amplitude had strong positive correlations with vection strength. The M-L CoP complexity was reduced under oscillations with low frequency. The medium oscillation amplitude had greater M-L CoP complexity than the small and large amplitude. Besides, subjects preferred those oscillation patterns with large gait complexity. We suggested that the oscillation amplitude with largest M-L CoP complexity should first be chosen to reduce gait constraints. Then, increasing the oscillation frequency to improve vection strength until individual preference or the boundary of motion sickness. These findings provide important guidelines to promote the sensation of natural walking in VE.
Collapse
Affiliation(s)
| | - Kaiming Yang
- Beijing Key Laboratory of Precision and Ultra-Precision Manufacturing Equipment and Control, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (W.W.); (Y.Z.)
| | | |
Collapse
|
9
|
Using Bidimensional Multiscale Entropy Analysis of Ultrasound Images to Assess the Effect of Various Walking Intensities on Plantar Soft Tissues. ENTROPY 2021; 23:e23030264. [PMID: 33668190 PMCID: PMC7995977 DOI: 10.3390/e23030264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 02/07/2023]
Abstract
Walking performance is usually assessed by linear analysis of walking outcome measures. However, human movements consist of both linear and nonlinear complexity components. The purpose of this study was to use bidimensional multiscale entropy analysis of ultrasound images to evaluate the effects of various walking intensities on plantar soft tissues. Twelve participants were recruited to perform six walking protocols, consisting of three speeds (slow at 1.8 mph, moderate at 3.6 mph, and fast at 5.4 mph) for two durations (10 and 20 min). A B-mode ultrasound was used to assess plantar soft tissues before and after six walking protocols. Bidimensional multiscale entropy (MSE2D) and the Complexity Index (CI) were used to quantify the changes in irregularity of the ultrasound images of the plantar soft tissues. The results showed that the CI of ultrasound images after 20 min walking increased when compared to before walking (CI4: 0.39 vs. 0.35; CI5: 0.48 vs. 0.43, p < 0.05). When comparing 20 and 10 min walking protocols at 3.6 mph, the CI was higher after 20 min walking than after 10 min walking (CI4: 0.39 vs. 0.36, p < 0.05; and CI5: 0.48 vs. 0.44, p < 0.05). This is the first study to use bidimensional multiscale entropy analysis of ultrasound images to assess plantar soft tissues after various walking intensities.
Collapse
|
10
|
Humeau-Heurtier A. Multiscale Entropy Approaches and Their Applications. ENTROPY 2020; 22:e22060644. [PMID: 33286416 PMCID: PMC7517182 DOI: 10.3390/e22060644] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 01/13/2023]
Affiliation(s)
- Anne Humeau-Heurtier
- LARIS-Laboratoire Angevin de Recherche en Ingénierie des Systèmes, University of Angers, 49035 Angers, France
| |
Collapse
|
11
|
Rosenblum U, Kribus-Shmiel L, Zeilig G, Bahat Y, Kimel-Naor S, Melzer I, Plotnik M. Novel methodology for assessing total recovery time in response to unexpected perturbations while walking. PLoS One 2020; 15:e0233510. [PMID: 32492029 PMCID: PMC7269230 DOI: 10.1371/journal.pone.0233510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/06/2020] [Indexed: 11/18/2022] Open
Abstract
Walking stability is achieved by adjusting the medio-lateral and anterior-posterior dimensions of the base of support (step length and step width, respectively) to contain an extrapolated center of mass. We aimed to calculate total recovery time after different types of perturbations during walking, and use it to compare young and older adults following different types of perturbations. Walking trials were performed in 12 young (age 26.92 ± 3.40 years) and 12 older (age 66.83 ± 1.60 years) adults. Perturbations were introduced at different phases of the gait cycle, on both legs and in anterior-posterior or medio-lateral directions, in random order. A novel algorithm was developed to determine total recovery time values for regaining stable step length and step width parameters following the different perturbations, and compared between the two participant groups under low and high cognitive load conditions, using principal component analysis (PCA). We analyzed 829 perturbations each for step length and step width. The algorithm successfully estimated total recovery time in 91.07% of the runs. PCA and statistical comparisons showed significant differences in step length and step width recovery times between anterior-posterior and medio-lateral perturbations, but no age-related differences. Initial analyses demonstrated the feasibility of comparisons based on total recovery time calculated using our algorithm.
Collapse
Affiliation(s)
- Uri Rosenblum
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Tel HaShomer, Israel
- Department of Physical Therapy, Recanati School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lotem Kribus-Shmiel
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Tel HaShomer, Israel
| | - Gabi Zeilig
- Department of Neurological Rehabilitation, Sheba Medical Center, Tel HaShomer, Israel
- Department of Physical and Rehabilitation Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yotam Bahat
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Tel HaShomer, Israel
| | - Shani Kimel-Naor
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Tel HaShomer, Israel
| | - Itshak Melzer
- Department of Physical Therapy, Recanati School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Meir Plotnik
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Tel HaShomer, Israel
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|