1
|
Nishiyama A, Tanaka S, Tuszynski JA. Non-Equilibrium Quantum Brain Dynamics: Water Coupled with Phonons and Photons. ENTROPY (BASEL, SWITZERLAND) 2024; 26:981. [PMID: 39593925 PMCID: PMC11592528 DOI: 10.3390/e26110981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024]
Abstract
We investigate Quantum Electrodynamics (QED) of water coupled with sound and light, namely Quantum Brain Dynamics (QBD) of water, phonons and photons. We provide phonon degrees of freedom as additional quanta in the framework of QBD in this paper. We begin with the Lagrangian density QED with non-relativistic charged bosons, photons and phonons, and derive time-evolution equations of coherent fields and Kadanoff-Baym (KB) equations for incoherent particles. We next show an acoustic super-radiance solution in our model. We also introduce a kinetic entropy current in KB equations in 1st order approximation in the gradient expansion and show the H-theorem for self-energy in Hartree-Fock approximation. We finally derive conserved number density of charged bosons and conserved energy density in spatially homogeneous system.
Collapse
Affiliation(s)
- Akihiro Nishiyama
- Graduate School of System Informatics, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Shigenori Tanaka
- Graduate School of System Informatics, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Jack Adam Tuszynski
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, AB T6G 2M9, Canada
- Department of Data Science and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland
| |
Collapse
|
2
|
Nishiyama A, Tanaka S, Tuszynski JA, Tsenkova R. Holographic Brain Theory: Super-Radiance, Memory Capacity and Control Theory. Int J Mol Sci 2024; 25:2399. [PMID: 38397075 PMCID: PMC10889214 DOI: 10.3390/ijms25042399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
We investigate Quantum Electrodynamics corresponding to the holographic brain theory introduced by Pribram to describe memory in the human brain. First, we derive a super-radiance solution in Quantum Electrodynamics with non-relativistic charged bosons (a model of molecular conformational states of water) for coherent light sources of holograms. Next, we estimate memory capacity of a brain neocortex, and adopt binary holograms to manipulate optical information. Finally, we introduce a control theory to manipulate holograms involving biological water's molecular conformational states. We show how a desired waveform in holography is achieved in a hierarchical model using numerical simulations.
Collapse
Affiliation(s)
- Akihiro Nishiyama
- Graduate School of System Informatics, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan;
- Aquaphotomics Research Department, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-0851, Japan
- Yunosato Aquaphotomics Lab, Hashimoto 648-0086, Japan
| | - Shigenori Tanaka
- Graduate School of System Informatics, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan;
| | - Jack A. Tuszynski
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-1029 Turin, Italy
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, AB T6G 2M9, Canada
- Department of Data Science and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland
| | - Roumiana Tsenkova
- Aquaphotomics Research Department, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-0851, Japan
| |
Collapse
|
3
|
Crawford MA, Sinclair AJ, Wang Y, Schmidt WF, Broadhurst CL, Dyall SC, Horn L, Brenna JT, Johnson MR. Docosahexaenoic Acid Explains the Unexplained in Visual Transduction. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1520. [PMID: 37998212 PMCID: PMC10670429 DOI: 10.3390/e25111520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
In George Wald's Nobel Prize acceptance speech for "discoveries concerning the primary physiological and chemical visual processes in the eye", he noted that events after the activation of rhodopsin are too slow to explain visual reception. Photoreceptor membrane phosphoglycerides contain near-saturation amounts of the omega-3 fatty acid docosahexaenoic acid (DHA). The visual response to a photon is a retinal cis-trans isomerization. The trans-state is lower in energy; hence, a quantum of energy is released equivalent to the sum of the photon and cis-trans difference. We hypothesize that DHA traps this energy, and the resulting hyperpolarization extracts the energized electron, which depolarizes the membrane and carries a function of the photon's energy (wavelength) to the brain. There, it contributes to the creation of the vivid images of our world that we see in our consciousness. This proposed revision to the visual process provides an explanation for these previously unresolved issues around the speed of information transfer and the purity of conservation of a photon's wavelength and supports observations of the unique and indispensable role of DHA in the visual process.
Collapse
Affiliation(s)
- Michael A. Crawford
- Institute of Brain Chemistry and Human Nutrition, Imperial College, London SW10 9NH, UK; (Y.W.); (M.R.J.)
| | - Andrew J. Sinclair
- Faculty of Health, Deakin University, Burwood, VIC 3125, Australia;
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC 3168, Australia
| | - Yiqun Wang
- Institute of Brain Chemistry and Human Nutrition, Imperial College, London SW10 9NH, UK; (Y.W.); (M.R.J.)
| | - Walter F. Schmidt
- US Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA; (W.F.S.); (C.L.B.)
| | - C. Leigh Broadhurst
- US Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA; (W.F.S.); (C.L.B.)
| | - Simon C. Dyall
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK;
| | | | - J. Thomas Brenna
- Dell Pediatric Research Institute, Dell Medical School, Austin, TX 78723, USA;
| | - Mark R. Johnson
- Institute of Brain Chemistry and Human Nutrition, Imperial College, London SW10 9NH, UK; (Y.W.); (M.R.J.)
| |
Collapse
|
4
|
Nishiyama A, Tanaka S, Tuszynski JA. Nonequilibrium quantum brain dynamics. ADVANCES IN QUANTUM CHEMISTRY 2020. [DOI: 10.1016/bs.aiq.2020.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|