1
|
Pinto H, Lazic I, Antonacci Y, Pernice R, Gu D, Barà C, Faes L, Rocha AP. Testing dynamic correlations and nonlinearity in bivariate time series through information measures and surrogate data analysis. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1385421. [PMID: 38835949 PMCID: PMC11148466 DOI: 10.3389/fnetp.2024.1385421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/22/2024] [Indexed: 06/06/2024]
Abstract
The increasing availability of time series data depicting the evolution of physical system properties has prompted the development of methods focused on extracting insights into the system behavior over time, discerning whether it stems from deterministic or stochastic dynamical systems. Surrogate data testing plays a crucial role in this process by facilitating robust statistical assessments. This ensures that the observed results are not mere occurrences by chance, but genuinely reflect the inherent characteristics of the underlying system. The initial process involves formulating a null hypothesis, which is tested using surrogate data in cases where assumptions about the underlying distributions are absent. A discriminating statistic is then computed for both the original data and each surrogate data set. Significantly deviating values between the original data and the surrogate data ensemble lead to the rejection of the null hypothesis. In this work, we present various surrogate methods designed to assess specific statistical properties in random processes. Specifically, we introduce methods for evaluating the presence of autodependencies and nonlinear dynamics within individual processes, using Information Storage as a discriminating statistic. Additionally, methods are introduced for detecting coupling and nonlinearities in bivariate processes, employing the Mutual Information Rate for this purpose. The surrogate methods introduced are first tested through simulations involving univariate and bivariate processes exhibiting both linear and nonlinear dynamics. Then, they are applied to physiological time series of Heart Period (RR intervals) and respiratory flow (RESP) variability measured during spontaneous and paced breathing. Simulations demonstrated that the proposed methods effectively identify essential dynamical features of stochastic systems. The real data application showed that paced breathing, at low breathing rate, increases the predictability of the individual dynamics of RR and RESP and dampens nonlinearity in their coupled dynamics.
Collapse
Affiliation(s)
- Helder Pinto
- Departamento de Matemática, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Centro de Matemática da Universidade do Porto (CMUP), Porto, Portugal
| | - Ivan Lazic
- Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Yuri Antonacci
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Riccardo Pernice
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Danlei Gu
- Beijing Jiaotong University, Beijing, China
| | - Chiara Barà
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Luca Faes
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Ana Paula Rocha
- Departamento de Matemática, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Centro de Matemática da Universidade do Porto (CMUP), Porto, Portugal
| |
Collapse
|
2
|
Keshmiri S, Tomonaga S, Mizutani H, Doya K. Respiratory modulation of the heart rate: A potential biomarker of cardiorespiratory function in human. Comput Biol Med 2024; 173:108335. [PMID: 38564855 DOI: 10.1016/j.compbiomed.2024.108335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/07/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
In recent decade, wearable digital devices have shown potentials for the discovery of novel biomarkers of humans' physiology and behavior. Heart rate (HR) and respiration rate (RR) are most crucial bio-signals in humans' digital phenotyping research. HR is a continuous and non-invasive proxy to autonomic nervous system and ample evidence pinpoints the critical role of respiratory modulation of cardiac function. In the present study, we recorded longitudinal (7 days, 4.63 ± 1.52) HR and RR of 89 freely behaving human subjects (Female: 39, age 57.28 ± 5.67, Male: 50, age 58.48 ± 6.32) and analyzed their dynamics using linear models and information theoretic measures. While HR's linear and nonlinear characteristics were expressed within the plane of the HR-RR directed flow of information (HR→RR - RR→HR), their dynamics were determined by its RR→HR axis. More importantly, RR→HR quantified the effect of alcohol consumption on individuals' cardiorespiratory function independent of their consumed amount of alcohol, thereby signifying the presence of this habit in their daily life activities. The present findings provided evidence for the critical role of the respiratory modulation of HR, which was previously only studied in non-human animals. These results can contribute to humans' phenotyping research by presenting RR→HR as a digital diagnosis/prognosis marker of humans' cardiorespiratory pathology.
Collapse
Affiliation(s)
- Soheil Keshmiri
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology, Okinawa, Japan.
| | - Sutashu Tomonaga
- Neural Computation Unit (NCU), Okinawa Institute of Science and Technology, Okinawa, Japan.
| | - Haruo Mizutani
- Suntory Global Innovation Center Limited (SGIC), Suntory, Kyoto, Japan.
| | - Kenji Doya
- Neural Computation Unit (NCU), Okinawa Institute of Science and Technology, Okinawa, Japan.
| |
Collapse
|
3
|
Singh K, Saini I, Sood N. A framework based on the information domain to measure coupling changes in electrophysiological signals. Biomed Phys Eng Express 2023; 9:055022. [PMID: 37527634 DOI: 10.1088/2057-1976/acec4e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/01/2023] [Indexed: 08/03/2023]
Abstract
Objectives.In this paper, the features of physiological signals of healthy dataset are extracted using the linear and non-linear techniques, and a comparison has been made on healthy young and old subjects to study the aging and gender-related changes in the contribution of Heart Rate (HR), Blood Pressure (BP), and Respiration (RESP).Methods. To quantify the coupling changes in cardiovascular, cardiorespiratory, and vasculorespiratory complexity, an information domain approach based on compensated transfer entropy (cTE) is proposed.Result. The results show that there is a substantial decrease in the flow of information from BP tro the time interval between successive R-peaks (RR) and from RR to BP. There is also a significant decrease in the flow of information from RESP to BP and RESP to RR but there is no significant change in the information flow from BP to RESP and RR to RESP.Conclusion. We have done linear and non-linear analysis on the healthy datasets of young and old subjects. As already existed techniques lacks in studying complex behaviours of electrophysiological signals so to overcome these limitations, we have proposed compensated transfer entropy (cTE). We conducted an investigation to determine the degree to which recordings of RESP, BP, and HR can be utilized to predict changes in the other parameters. Specifically, the proposed analysis examined the relationship between these variables and assessed their consistency across different age groups and genders. By analyzing the data, we aimed to gain insights into the interdependencies and predictive potential of these physiological measures in relation to each other.
Collapse
Affiliation(s)
- Kirti Singh
- Department of ECE, Dr BR Ambedkar National Institute of Technology, Jalandhar, Punjab 144001, India
| | - Indu Saini
- Department of ECE, Dr BR Ambedkar National Institute of Technology, Jalandhar, Punjab 144001, India
| | - Neetu Sood
- Department of ECE, Dr BR Ambedkar National Institute of Technology, Jalandhar, Punjab 144001, India
| |
Collapse
|
4
|
Pinto H, Antonacci Y, Pernice R, Bara C, Javorka M, Faes L, Rocha AP. Decomposing the Mutual Information Rate of Heart Period and Respiration Variability Series to Assess Cardiorespiratory Interactions. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083242 DOI: 10.1109/embc40787.2023.10341174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Heart rate variability results from the coupled activity of the cardiovascular and cardiorespiratory systems, which have their own internal regulation mechanisms but also interact with each other and with the autonomic nervous system to maintain homeostasis. In this work, the assessment of these physiological mechanisms is carried out decomposing the Mutual Information Rate (MIR), an information-theoretic measure of the interdependence between coupled processes, into terms of entropy rate or conditional mutual information related respectively to complexity and causality measures. These measures are computed using a non-parametric approach based on nearest-neighbors. The proposed framework is first tested on simulated autoregressive processes and then applied to experimental data consisting of heart period and respiratory time series measured in healthy subjects monitored at rest and during head-up tilt. Our results evidence that MIR decomposition is able to highlight the interdependence of short-term physiological mechanisms of cardiorespiratory interactions during postural stress.
Collapse
|
5
|
Pinto H, Pernice R, Silva ME, Javorka M, Faes L, Rocha AP. Multiscale partial information decomposition of dynamic processes with short and long-range correlations: theory and application to cardiovascular control. Physiol Meas 2022; 43. [PMID: 35853449 DOI: 10.1088/1361-6579/ac826c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/19/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE In this work, an analytical framework for the multiscale analysis of multivariate Gaussian processes is presented, whereby the computation of Partial Information Decomposition measures is achieved accounting for the simultaneous presence of short-term dynamics and long-range correlations. APPROACH We consider physiological time series mapping the activity of the cardiac, vascular and respiratory systems in the field of Network Physiology. In this context, the multiscale representation of transfer entropy within the network of interactions among Systolic arterial pressure (S), respiration (R) and heart period (H), as well as the decomposition into unique, redundant and synergistic contributions, is obtained using a Vector AutoRegressive Fractionally Integrated (VARFI) framework for Gaussian processes. This novel approach allows to quantify the directed information flow accounting for the simultaneous presence of short-term dynamics and long-range correlations among the analyzed processes. Additionally, it provides analytical expressions for the computation of the information measures, by exploiting the theory of state space models. The approach is first illustrated in simulated VARFI processes and then applied to H, S and R time series measured in healthy subjects monitored at rest and during mental and postural stress. MAIN RESULTS We demonstrate the ability of the VARFI modeling approach to account for the coexistence of short-term and long-range correlations in the study of multivariate processes. Physiologically, we show that postural stress induces larger redundant and synergistic effects from S and R to H at short time scales, while mental stress induces larger information transfer from S to H at longer time scales, thus evidencing the different nature of the two stressors. SIGNIFICANCE The proposed methodology allows to extract useful information about the dependence of the information transfer on the balance between short-term and long-range correlations in coupled dynamical systems, which cannot be observed using standard methods that do not consider long-range correlations.
Collapse
Affiliation(s)
- Hélder Pinto
- Universidade do Porto Faculdade de Ciencias, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal, Porto, 4169-007, PORTUGAL
| | - Riccardo Pernice
- Department of Engineering, University of Palermo, Viale delle Scienze, Bldg. 9, Palermo, 90128, ITALY
| | - Maria Eduarda Silva
- Universidade do Porto Faculdade de Economia, R. Dr. Roberto Frias 464, Porto, Porto, Porto, 4200-464, PORTUGAL
| | - Michal Javorka
- Department of Physiology, Comenius University in Bratislava Jessenius Faculty of Medicine in Martin, Malá hora 4A, 036 01 Martin-Záturčie, Martin, 036 01, SLOVAKIA
| | - Luca Faes
- DEIM, University of Palermo, Viale delle Scienze, Bldg. 9, Palermo, 90128, ITALY
| | - Ana Paula Rocha
- Universidade do Porto Faculdade de Ciencias, Rua do Campo Alegre s/n, 4169-007 Porto, Porto, Porto, 4169-007, PORTUGAL
| |
Collapse
|
6
|
Pinto H, Dias C, Rocha AP. Multiscale Information Decomposition of Long Memory Processes: Application to Plateau Waves of Intracranial Pressure. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:1753-1756. [PMID: 36085854 DOI: 10.1109/embc48229.2022.9870925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Traumatic Brain Injury (TBI) patients present high levels of physical stress, which in some situations can manifest as Plateau Wave (PW) episodes. This intense stress phenomenon can be evidenced by Heart Rate Variability (HRV). Thus, the multivariate and simultaneous analysis of cardio-cerebrovascular oscillations, involving the RR intervals, mean arterial pressure (MAP) and the amplitude of intracranial pressure (AMP), will be useful to understand the interconnections between body signals, allowing the interpretation of the combined activity of pathophysiological mechanisms. In this work, the multiscale representation of the Transfer Entropy (TE) and of its decomposition in the network of these three interacting processes is obtained, based on a Vector AutoRegressive Fractionally Integrated (VARFI) framework for Gaussian processes. This method allows to assess directed interactions and to quantify the information flow accounting for the simultaneous presence of short-term dynamics and long-range correlations. The results show that the baseline RR, but not MAP can provide information about the possibility of a PW arising. During PW, the long-term correlations highlight synergistic interactions between MAP and AMP processes on RR. The multiscale decomposition of the information along with the incorporation of the long term correlations allowed a better description of HRV during PW, highlighting the fact that the HRV mirrors this cerebrovascular phenomena.
Collapse
|
7
|
Faes L, Pernice R, Mijatovic G, Antonacci Y, Krohova JC, Javorka M, Porta A. Information decomposition in the frequency domain: a new framework to study cardiovascular and cardiorespiratory oscillations. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200250. [PMID: 34689619 DOI: 10.1098/rsta.2020.0250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 06/13/2023]
Abstract
While cross-spectral and information-theoretic approaches are widely used for the multivariate analysis of physiological time series, their combined utilization is far less developed in the literature. This study introduces a framework for the spectral decomposition of multivariate information measures, which provides frequency-specific quantifications of the information shared between a target and two source time series and of its expansion into amounts related to how the sources contribute to the target dynamics with unique, redundant and synergistic information. The framework is illustrated in simulations of linearly interacting stochastic processes, showing how it allows us to retrieve amounts of information shared by the processes within specific frequency bands which are otherwise not detectable by time-domain information measures, as well as coupling features which are not detectable by spectral measures. Then, it is applied to the time series of heart period, systolic and diastolic arterial pressure and respiration variability measured in healthy subjects monitored in the resting supine position and during head-up tilt. We show that the spectral measures of unique, redundant and synergistic information shared by these variability series, integrated within specific frequency bands of physiological interest and reflect the mechanisms of short-term regulation of cardiovascular and cardiorespiratory oscillations and their alterations induced by the postural stress. This article is part of the theme issue 'Advanced computation in cardiovascular physiology: new challenges and opportunities'.
Collapse
Affiliation(s)
- Luca Faes
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Riccardo Pernice
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Gorana Mijatovic
- Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Yuri Antonacci
- Department of Physics and Chemistry 'Emilio Segrè', University of Palermo, Palermo, Italy
| | - Jana Cernanova Krohova
- Department of Physiology and Biomedical Centre Martin (BioMed Martin), Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Michal Javorka
- Department of Physiology and Biomedical Centre Martin (BioMed Martin), Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
8
|
Pinto H, Pernice R, Amado C, Silva ME, Javorka M, Faes L, Rocha AP. Assessing Transfer Entropy in cardiovascular and respiratory time series under long-range correlations. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:748-751. [PMID: 34891399 DOI: 10.1109/embc46164.2021.9630004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Heart Period (H) results from the activity of several coexisting control mechanisms, involving Systolic Arterial Pressure (S) and Respiration (R), which operate across multiple time scales encompassing not only short-term dynamics but also long-range correlations. In this work, multiscale representation of Transfer Entropy (TE) and of its decomposition in the network of these three interacting processes is obtained by extending the multivariate approach based on linear parametric VAR models to the Vector AutoRegressive Fractionally Integrated (VARFI) framework for Gaussian processes. This approach allows to dissect the different contributions to cardiac dynamics accounting for the simultaneous presence of short and long term dynamics. The proposed method is first tested on simulations of a benchmark VARFI model and then applied to experimental data consisting of H, S and R time series measured in healthy subjects monitored at rest and during mental and postural stress. The results reveal that the proposed method can highlight the dependence of the information transfer on the balance between short-term and long-range correlations in coupled dynamical systems.
Collapse
|
9
|
Antonacci Y, Minati L, Faes L, Pernice R, Nollo G, Toppi J, Pietrabissa A, Astolfi L. Estimation of Granger causality through Artificial Neural Networks: applications to physiological systems and chaotic electronic oscillators. PeerJ Comput Sci 2021; 7:e429. [PMID: 34084917 PMCID: PMC8157130 DOI: 10.7717/peerj-cs.429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/15/2021] [Indexed: 05/13/2023]
Abstract
One of the most challenging problems in the study of complex dynamical systems is to find the statistical interdependencies among the system components. Granger causality (GC) represents one of the most employed approaches, based on modeling the system dynamics with a linear vector autoregressive (VAR) model and on evaluating the information flow between two processes in terms of prediction error variances. In its most advanced setting, GC analysis is performed through a state-space (SS) representation of the VAR model that allows to compute both conditional and unconditional forms of GC by solving only one regression problem. While this problem is typically solved through Ordinary Least Square (OLS) estimation, a viable alternative is to use Artificial Neural Networks (ANNs) implemented in a simple structure with one input and one output layer and trained in a way such that the weights matrix corresponds to the matrix of VAR parameters. In this work, we introduce an ANN combined with SS models for the computation of GC. The ANN is trained through the Stochastic Gradient Descent L1 (SGD-L1) algorithm, and a cumulative penalty inspired from penalized regression is applied to the network weights to encourage sparsity. Simulating networks of coupled Gaussian systems, we show how the combination of ANNs and SGD-L1 allows to mitigate the strong reduction in accuracy of OLS identification in settings of low ratio between number of time series points and of VAR parameters. We also report how the performances in GC estimation are influenced by the number of iterations of gradient descent and by the learning rate used for training the ANN. We recommend using some specific combinations for these parameters to optimize the performance of GC estimation. Then, the performances of ANN and OLS are compared in terms of GC magnitude and statistical significance to highlight the potential of the new approach to reconstruct causal coupling strength and network topology even in challenging conditions of data paucity. The results highlight the importance of of a proper selection of regularization parameter which determines the degree of sparsity in the estimated network. Furthermore, we apply the two approaches to real data scenarios, to study the physiological network of brain and peripheral interactions in humans under different conditions of rest and mental stress, and the effects of the newly emerged concept of remote synchronization on the information exchanged in a ring of electronic oscillators. The results highlight how ANNs provide a mesoscopic description of the information exchanged in networks of multiple interacting physiological systems, preserving the most active causal interactions between cardiovascular, respiratory and brain systems. Moreover, ANNs can reconstruct the flow of directed information in a ring of oscillators whose statistical properties can be related to those of physiological networks.
Collapse
Affiliation(s)
- Yuri Antonacci
- Department of Physics and Chemistry “Emilio Segrè”, University of Palermo, Palermo, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
- Department of Computer, Control and Management Engineering “Antonio Ruberti”, University of Rome “La Sapienza”, Rome, Italy
| | - Ludovico Minati
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Luca Faes
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Riccardo Pernice
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Giandomenico Nollo
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Jlenia Toppi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
- Department of Computer, Control and Management Engineering “Antonio Ruberti”, University of Rome “La Sapienza”, Rome, Italy
| | - Antonio Pietrabissa
- Department of Computer, Control and Management Engineering “Antonio Ruberti”, University of Rome “La Sapienza”, Rome, Italy
| | - Laura Astolfi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
- Department of Computer, Control and Management Engineering “Antonio Ruberti”, University of Rome “La Sapienza”, Rome, Italy
| |
Collapse
|
10
|
Humeau-Heurtier A. Multiscale Entropy Approaches and Their Applications. ENTROPY 2020; 22:e22060644. [PMID: 33286416 PMCID: PMC7517182 DOI: 10.3390/e22060644] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 01/13/2023]
Affiliation(s)
- Anne Humeau-Heurtier
- LARIS-Laboratoire Angevin de Recherche en Ingénierie des Systèmes, University of Angers, 49035 Angers, France
| |
Collapse
|