1
|
Vincent L, Zidi M, Portero P, Belghith K, Serhal RB, Guihard M, Maktouf W. Quantifying Active and Passive Stiffness in Plantar Flexor Muscles Following Intermittent Maximal Isometric Contractions Using Shear Wave Elastography. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1987-1994. [PMID: 39343628 DOI: 10.1016/j.ultrasmedbio.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024]
Abstract
OBJECTIVE This study aimed: (i) to investigate the impact of fatigue, triggered by maximal isometric contraction exercises, on the active and passive stiffness of plantar flexors (PF), and (ii) to examine the relationship between changes in mechanical parameters and neuromuscular alterations after fatigue. METHODS A healthy cohort (n = 12; age = 27.3 ± 5.5 y; BMI = 24.4 ± 2.35 kg/m²) was instructed to perform 60 isometric contractions, each lasting 4 s with a 1-s rest interval, using an ergometer. Several measures were taken before and after the fatigue protocol. First, the stiffness of the PF-tendon complex (PFC) was quantified during passive ankle mobilization both during and after the fatigue protocol using the ergometer. Additionally, from shear wave elastography, the active and passive stiffness of the gastrocnemius medialis (GM) were measured during passive ankle mobilization and isometric maximal voluntary contraction (MVC), respectively. Finally, the peak torque and the rate of torque development (RFD) of PF were assessed during the MVC using the ergometer. Ankle muscle activities (surface electromyograph [SEMG]) were recorded during all evaluations using electromyography. RESULTS After the fatigue protocol, the results revealed a decline in active stiffness, peak torque of PF, RFD and SEMG activity of the GM (p < 0.001). Furthermore, significant correlation was identified between the decrease of the peak torque of PF and the active stiffness of the GM (r = 0.6; p < 0.05). A decrease in the PFC stiffness (p < 0.001) and a decrease in the shear modulus of the GM at 20° (p < 0.001) were also observed. CONCLUSION Isometric fatiguing exercises modify the mechanical properties of both the contractile and elastic components. Notably, decreases in both passive and active stiffness may be critical for athletes, as these changes could potentially increase the risk of injury.
Collapse
Affiliation(s)
- Lhéo Vincent
- University of Paris Est Creteil, BIOTN, Creteil, France; EMEIS Group, Clinique du Parc de Belleville, Paris, France
| | - Mustapha Zidi
- University of Paris Est Creteil, BIOTN, Creteil, France
| | | | - Kalthoum Belghith
- University of Paris Est Creteil, BIOTN, Creteil, France; EMEIS Group, Clinique du Parc de Belleville, Paris, France
| | | | | | - Wael Maktouf
- University of Paris Est Creteil, BIOTN, Creteil, France.
| |
Collapse
|
2
|
严 仕, 杨 晔, 易 鹏. [Enhancement algorithm for surface electromyographic-based gesture recognition based on real-time fusion of muscle fatigue features]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:958-968. [PMID: 39462664 PMCID: PMC11527766 DOI: 10.7507/1001-5515.202312023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 07/30/2024] [Indexed: 10/29/2024]
Abstract
This study aims to optimize surface electromyography-based gesture recognition technique, focusing on the impact of muscle fatigue on the recognition performance. An innovative real-time analysis algorithm is proposed in the paper, which can extract muscle fatigue features in real time and fuse them into the hand gesture recognition process. Based on self-collected data, this paper applies algorithms such as convolutional neural networks and long short-term memory networks to provide an in-depth analysis of the feature extraction method of muscle fatigue, and compares the impact of muscle fatigue features on the performance of surface electromyography-based gesture recognition tasks. The results show that by fusing the muscle fatigue features in real time, the algorithm proposed in this paper improves the accuracy of hand gesture recognition at different fatigue levels, and the average recognition accuracy for different subjects is also improved. In summary, the algorithm in this paper not only improves the adaptability and robustness of the hand gesture recognition system, but its research process can also provide new insights into the development of gesture recognition technology in the field of biomedical engineering.
Collapse
Affiliation(s)
- 仕嘉 严
- 上海师范大学 信息与机电工程学院(上海 200234)College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, P. R. China
- 上海智能教育大数据工程技术研究中心(上海 200234)Shanghai Engineering Research Center of Intelligent Education and Bigdata, Shanghai 200234, P. R. China
| | - 晔 杨
- 上海师范大学 信息与机电工程学院(上海 200234)College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, P. R. China
- 上海智能教育大数据工程技术研究中心(上海 200234)Shanghai Engineering Research Center of Intelligent Education and Bigdata, Shanghai 200234, P. R. China
| | - 鹏 易
- 上海师范大学 信息与机电工程学院(上海 200234)College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, P. R. China
- 上海智能教育大数据工程技术研究中心(上海 200234)Shanghai Engineering Research Center of Intelligent Education and Bigdata, Shanghai 200234, P. R. China
| |
Collapse
|
3
|
Jia Y, Liu Y, Lei J, Wang H, Wang R, Zhao P, Sun T, Hou X. Using nonlinear dynamics analysis to evaluate time response of cupping therapy with different intervention timings on reducing muscle fatigue. Front Bioeng Biotechnol 2024; 12:1436235. [PMID: 39411055 PMCID: PMC11473309 DOI: 10.3389/fbioe.2024.1436235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/28/2024] [Indexed: 10/19/2024] Open
Abstract
Background Cupping therapy has been indicated effective in reducing muscle fatigue after 24 h based on the spectral analyses of surface electromyography (sEMG). However, there is no sufficient evidence showing changes of sEMG nonlinear indexes at more time points after cupping therapy. Furthermore, it is unclear whether the intervention timings of cupping therapy affect the recovery from muscle fatigue. The purpose of this study was to use the sEMG nonlinear analysis to assess the difference of time response of cupping therapy between different intervention timings after muscle fatigue. Materials and methods This randomized controlled trial recruited 26 healthy volunteers. Cupping therapy (-300 mmHg pressure for 5 min by the 45 mm-diameter cup) was applied before (i.e., pre-condition) or after (i.e., post-condition) muscle fatigue induced by performing repeated biceps curls at 75% of the 10 repetitions of maximum (RM) on the non-dominant upper extremity. Subjects were randomly allocated to the pre-condition group or the post-condition group. The sEMG signals during the maximal voluntary isometric contractions (MVC) of the biceps were recorded at four time points (i.e., baseline; post 1: immediate after cupping-fatigue/fatigue-cupping interventions; post 2: 3 h after cupping-fatigue/fatigue-cupping interventions; post 3: 6 h after cupping-fatigue/fatigue-cupping interventions). Two nonlinear sEMG indexes (sample entropy, SampEn; and percent determinism based on recurrence quantification analysis, %DET) were used to evaluate the recovery from exercise-introduced muscle fatigue. The Friedman test followed by the Nemenyi test and the Mann-Whitney U test were applied in statistics. Results The SampEn and %DET change rate did not show any significant differences at four time points in the pre-condition group. However, there were significant delayed effects instead of immediate effects on improving muscle fatigue in the post-condition group (SampEn change rate: baseline 0.0000 ± 0.0000 vs. post 2 0.1105 ± 0.2253, p < 0.05; baseline 0.0000 ± 0.0000 vs. post 3 0.0627 ± 0.4665, p < 0.05; post 1-0.0321 ± 0.2668 vs. post 3 0.0627 ± 0.4665, p < 0.05; and %DET change rate: baseline 0.0000 ± 0.0000 vs. post 2-0.1240 ± 0.1357, p < 0.01; baseline 0.0000 ± 0.0000 vs. post 3 0.0704 ± 0.6495, p < 0.05; post 1 0.0700 ± 0.3819 vs. post 3 0.0704 ± 0.6495, p < 0.05). Moreover, the SampEn change rate of the post-condition group (0.1105 ± 0.2253) was significantly higher than that of the pre-condition group (0.0006 ± 0.0634, p < 0.05) at the post 2 time point. No more significant between-groups difference was found in this study. Conclusion This is the first study demonstrating that both the pre-condition and post-condition of cupping therapy are useful for reducing muscle fatigue. The post-condition cupping therapy can e ffectively alleviate exercise-induced muscle fatigue and there is a significant delayed effect, especially 3 h after the interventions. Although the pre-condition cupping therapy can not significantly enhance muscle manifestations, it can recover muscles into a non-fatigued state.
Collapse
Affiliation(s)
- Yuanyuan Jia
- Key Laboratory of Exercise and Physical Fitness, Beijing Sport University, Ministry of Education, Beijing, China
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Yining Liu
- Harrison International Peace Hospital, Hengshui, China
| | - Juntian Lei
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Huihui Wang
- Key Laboratory of Exercise and Physical Fitness, Beijing Sport University, Ministry of Education, Beijing, China
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Rong Wang
- Key Laboratory of Exercise and Physical Fitness, Beijing Sport University, Ministry of Education, Beijing, China
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Pengrui Zhao
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Tingting Sun
- Key Laboratory of Exercise and Physical Fitness, Beijing Sport University, Ministry of Education, Beijing, China
| | - Xiao Hou
- Key Laboratory of Exercise and Physical Fitness, Beijing Sport University, Ministry of Education, Beijing, China
- School of Sport Science, Beijing Sport University, Beijing, China
| |
Collapse
|
4
|
Thurston M, Peltoniemi M, Giangrande A, Vujaklija I, Botter A, Kulmala JP, Piitulainen H. High-density EMG reveals atypical spatial activation of the gastrocnemius during walking in adolescents with Cerebral Palsy. J Electromyogr Kinesiol 2024; 79:102934. [PMID: 39378587 DOI: 10.1016/j.jelekin.2024.102934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/06/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
Children with Cerebral Palsy (CP) exhibit less-selective, simplified muscle activation during gait due to injury of the developing brain. Abnormal motor unit recruitment, altered excitation-inhibition balance, and muscle morphological changes all affect the CP electromyogram. High-density surface electromyography (HDsEMG) has potential to reveal novel manifestations of CP neuromuscular pathology and functional deficits by assessing spatiotemporal details of myoelectric activity. We used HDsEMG to investigate spatial-EMG distribution and temporal-EMG complexity of gastrocnemius medialis (GM) muscle during treadmill walking in 11 adolescents with CP and 11 typically developed (TD) adolescents. Our results reveal more-uniform spatial-EMG amplitude distribution across the GM in adolescents with CP, compared to distal emphasis in TD adolescents. More-uniform spatial-EMG was associated with stronger ankle co-contraction and spasticity. CP adolescents exhibited a non-significant trend towards elevated EMG-temporal complexity. Homogenous spatial distribution and disordered temporal evolution of myoelectric activity in CP suggests less-structured and desynchronized recruitment of GM motor units, in combination with muscle morphological changes. Using HDsEMG, we uncovered novel evidence of atypical spatiotemporal activation during gait in CP, opening paths towards deeper understanding of motor control deficits and better characterization of changes in muscular activation from interventions.
Collapse
Affiliation(s)
- Maxwell Thurston
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland; Motion Laboratory, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| | - Mika Peltoniemi
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland; Motion Laboratory, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Alessandra Giangrande
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland; Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronics and Telecommunication, Politecnico di Torino, Turin, Italy; PoliToBIOMed Laboratory, Politecnico di Torino, Turin, Italy
| | - Ivan Vujaklija
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Alberto Botter
- Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronics and Telecommunication, Politecnico di Torino, Turin, Italy; PoliToBIOMed Laboratory, Politecnico di Torino, Turin, Italy
| | - Juha-Pekka Kulmala
- Motion Laboratory, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; School of Health and Social Studies, JAMK University of Applied Sciences, Jyväskylä, Finland
| | - Harri Piitulainen
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland; Motion Laboratory, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Bala S, Vishnu VY, Joshi D. MEFFNet: Forecasting Myoelectric Indices of Muscle Fatigue in Healthy and Post-Stroke During Voluntary and FES-Induced Dynamic Contractions. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2598-2611. [PMID: 39028608 DOI: 10.1109/tnsre.2024.3431024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Myoelectric indices forecasting is important for muscle fatigue monitoring in wearable technologies, adaptive control of assistive devices like exoskeletons and prostheses, functional electrical stimulation (FES)-based Neuroprostheses, and more. Non-stationary temporal development of these indices in dynamic contractions makes forecasting difficult. This study aims at incorporating transfer learning into a deep learning model, Myoelectric Fatigue Forecasting Network (MEFFNet), to forecast myoelectric indices of fatigue (both time and frequency domain) obtained during voluntary and FES-induced dynamic contractions in healthy and post-stroke subjects respectively. Different state-of-the-art deep learning models along with the novel MEFFNet architecture were tested on myoelectric indices of fatigue obtained during [Formula: see text] voluntary elbow flexion and extension with four different weights (1 kg, 2 kg, 3 kg, and 4 kg) in sixteen healthy subjects, and [Formula: see text] FES-induced elbow flexion in sixteen healthy and seventeen post-stroke subjects under three different stimulation patterns (customized rectangular, trapezoidal, and muscle synergy-based). A version of MEFFNet, named as pretrained MEFFNet, was trained on a dataset of sixty thousand synthetic time series to transfer its learning on real time series of myoelectric indices of fatigue. The pretrained MEFFNet could forecast up to 22.62 seconds, 60 timesteps, in future with a mean absolute percentage error of 15.99 ± 6.48% in voluntary and 11.93 ± 4.77% in FES-induced contractions, outperforming the MEFFNet and other models under consideration. The results suggest combining the proposed model with wearable technology, prosthetics, robotics, stimulation devices, etc. to improve performance. Transfer learning in time series forecasting has potential to improve wearable sensor predictions.
Collapse
|
6
|
Kotikangas J, Walker S, Peltonen H, Häkkinen K. Time Course of Neuromuscular Fatigue During Different Resistance Exercise Loadings in Power Athletes, Strength Athletes, and Nonathletes. J Strength Cond Res 2024; 38:1231-1242. [PMID: 38900602 DOI: 10.1519/jsc.0000000000004769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
ABSTRACT Kotikangas, J, Walker, S, Peltonen, H, and Häkkinen, K. Time course of neuromuscular fatigue during different resistance exercise loadings in power athletes, strength athletes, and nonathletes. J Strength Cond Res 38(7): 1231-1242, 2024-Training background may affect the progression of fatigue and neuromuscular strategies to compensate for fatigue during resistance exercises. Thus, our aim was to examine how training background affects the time course of neuromuscular fatigue in response to different resistance exercises. Power athletes (PA, n = 8), strength athletes (SA, n = 8), and nonathletes (NA, n = 7) performed hypertrophic loading (HL, 5 × 10 × 10RM), maximal strength loadings (MSL, 7 × 3 × 3RM) and power loadings (PL, 7 × 6 × 50% of 1 repetition maximum) in back squat. Average power (AP), average velocity (VEL), surface electromyography (sEMG) amplitude (sEMGRMS), and sEMG mean power frequency (sEMGMPF) were measured within all loading sets. During PL, greater decreases in AP occurred from the beginning of SET1 to SET7 and in VEL to both SET4 and SET7 in NA compared with SA (p < 0.01, g > 1.84). During HL, there were various significant group × repetition interactions in AP within and between sets (p < 0.05, ηp2 > 0.307), but post hoc tests did not indicate significant differences between the groups (p > 0.05, g = 0.01-0.93). During MSL and HL, significant within-set and between-set decreases occurred in AP (p < 0.001, ηp2 > 0.701) and VEL (p < 0.001, ηp2 > 0.748) concurrently with increases in sEMGRMS (p < 0.01, ηp2 > 0.323) and decreases in sEMGMPF (p < 0.01, ηp2 > 0.242) in all groups. In conclusion, SA showed fatigue resistance by maintaining higher AP and VEL throughout PL. During HL, PA tended to have the greatest initial fatigue response in AP, but between-group comparisons were nonsignificant despite large effect sizes (g > 0.8). The differences in the progression of neuromuscular fatigue may be related to differing neural activation strategies between the groups, but further research confirmation is required.
Collapse
Affiliation(s)
- Johanna Kotikangas
- Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- NeuroMuscular Research Center, Jyväskylä, Finland; and
| | - Simon Walker
- Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- NeuroMuscular Research Center, Jyväskylä, Finland; and
| | - Heikki Peltonen
- Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- NeuroMuscular Research Center, Jyväskylä, Finland; and
- Sport Business, School of Business, Jamk University of Applied Science, Jyväskylä, Finland
| | - Keijo Häkkinen
- Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- NeuroMuscular Research Center, Jyväskylä, Finland; and
| |
Collapse
|
7
|
Venugopal G, Sasidharan D, Swaminathan R. Analysis of induced dynamic biceps EMG signal complexity using Markov transition networks. Biomed Eng Lett 2024; 14:765-774. [PMID: 38946822 PMCID: PMC11208393 DOI: 10.1007/s13534-024-00372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 07/02/2024] Open
Abstract
Purpose Surface electromyography (sEMG) is a non-invasive technique to characterize muscle electrical activity. The analysis of sEMG signals under muscle fatigue play a crucial part in the branch of neurorehabilitation, sports medicine, biomechanics, and monitoring neuromuscular pathologies. In this work, a method to transform sEMG signals to complex networks under muscle fatigue conditions using Markov transition field (MTF) is proposed. The importance of normalization to a constant Maximum voluntary contraction (MVC) is also considered. Methods For this, dynamic signals are recorded using two different experimental protocols one under constant load and another referenced to 50% MVC from Biceps brachii of 50 and 45 healthy subjects respectively. MTF is generated and network graph is constructed from preprocesses signals. Features such as average self-transition probability, average clustering coefficient and modularity are extracted. Results All the extracted features showed statistical significance for the recorded signals. It is found that during the transition from non-fatigue to fatigue, average clustering coefficient decreases while average self-transition probability and modularity increases. Conclusion The results indicate higher degree of signal complexity during non-fatigue condition. Thus, the MTF approach may be used to indicate the complexity of sEMG signals. Although both datasets showed same trend in results, sEMG signals under 50% MVC exhibited higher separability for the features. The inter individual variations of the MTF features is found to be more for the signals recorded using constant load. The proposed study can be adopted to study the complex nature of muscles under various neuromuscular conditions.
Collapse
Affiliation(s)
- G. Venugopal
- Department of Instrumentation and Control Engineering, N.S.S. College of Engineering Palakkad, Affiliated to A P J Abdul Kalam Technological University, Kerala, 678008 India
| | - Divya Sasidharan
- Department of Instrumentation and Control Engineering, N.S.S. College of Engineering Palakkad, Affiliated to A P J Abdul Kalam Technological University, Kerala, 678008 India
| | - Ramakrishnan Swaminathan
- Biomedical Engineering Group, Department of Applied Mechanics and CoE in Medical Device Regulations and Standards, IIT Madras, Chennai, 600036 India
| |
Collapse
|
8
|
Coraggio G, Cera M, Cirelli M, Valentini PP. Review and comparison of linear algorithms to quantify muscle fatigue based on sEMG signals. ERGONOMICS 2024:1-19. [PMID: 38733111 DOI: 10.1080/00140139.2024.2349962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 01/27/2024] [Indexed: 05/13/2024]
Abstract
Surface electromyography techniques are widely used in field of motion analysis and ergonomics combining precise muscular activation assessment with low-invasiveness and wearability. The aim of this investigation is to identify the myoelectrical manifestations of fatigue and to compare the effectiveness of sEMG-based quantitative indices for fatigue assessment. The investigated indexes are the ARV and RMS signal amplitudes, the mean frequency, the median frequency, the Dimitrov index, the instantaneous mean frequency and Wavelet distribution-based WIRE51 index. Two different protocols were developed, and the activity of the lateral deltoid and middle trapezius muscles was recorded. The WIRE51 index is found to have the highest sensitivity in the detection of the difference between the repetitions of each exercise for both protocols. Due to the lack of a unified standard for the performance comparison of fatigue indices, a correlation analysis was carried out between the result provided by the indices and the subjective fatigue perception employing the RPE scale.
Collapse
Affiliation(s)
- Giorgia Coraggio
- Department of Enterprise Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Mattia Cera
- Department of Enterprise Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Marco Cirelli
- Department of Enterprise Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Pier Paolo Valentini
- Department of Enterprise Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
9
|
Luo S, Meng Q, Li S, Yu H. Research of intent recognition in rehabilitation robots: a systematic review. Disabil Rehabil Assist Technol 2024; 19:1307-1318. [PMID: 36695473 DOI: 10.1080/17483107.2023.2170477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023]
Abstract
PURPOSE Rehabilitation robots with intent recognition are helping people with dysfunction to enjoy better lives. Many rehabilitation robots with intent recognition have been developed by academic institutions and commercial companies. However, there is no systematic summary about the application of intent recognition in the field of rehabilitation robots. Therefore, the purpose of this paper is to summarize the application of intent recognition in rehabilitation robots, analyze the current status of their research, and provide cutting-edge research directions for colleagues. MATERIALS AND METHODS Literature searches were conducted on Web of Science, IEEE Xplore, ScienceDirect, SpringerLink, and Medline. Search terms included "rehabilitation robot", "intent recognition", "exoskeleton", "prosthesis", "surface electromyography (sEMG)" and "electroencephalogram (EEG)". References listed in relevant literature were further screened according to inclusion and exclusion criteria. RESULTS In this field, most studies have recognized movement intent by kinematic, sEMG, and EEG signals. However, in practical studies, the development of intent recognition in rehabilitation robots is limited by the hysteresis of kinematic signals and the weak anti-interference ability of sEMG and EEG signals. CONCLUSIONS Intent recognition has achieved a lot in the field of rehabilitation robotics but the key factors limiting its development are still timeliness and accuracy. In the future, intent recognition strategy with multi-sensor information fusion may be a good solution.
Collapse
Affiliation(s)
- Shengli Luo
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | | | - Sujiao Li
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Hongliu Yu
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
10
|
Hua A, Wang G, Bai J, Hao Z, Liu J, Meng J, Wang J. Nonlinear dynamics of postural control system under visual-vestibular habituation balance practice: evidence from EEG, EMG and center of pressure signals. Front Hum Neurosci 2024; 18:1371648. [PMID: 38736529 PMCID: PMC11082324 DOI: 10.3389/fnhum.2024.1371648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Human postural control system is inherently complex with nonlinear interaction among multiple subsystems. Accordingly, such postural control system has the flexibility in adaptation to complex environments. Previous studies applied complexity-based methods to analyze center of pressure (COP) to explore nonlinear dynamics of postural sway under changing environments, but direct evidence from central nervous system or muscular system is limited in the existing literature. Therefore, we assessed the fractal dimension of COP, surface electromyographic (sEMG) and electroencephalogram (EEG) signals under visual-vestibular habituation balance practice. We combined a rotating platform and a virtual reality headset to present visual-vestibular congruent or incongruent conditions. We asked participants to undergo repeated exposure to either congruent (n = 14) or incongruent condition (n = 13) five times while maintaining balance. We found repeated practice under both congruent and incongruent conditions increased the complexity of high-frequency (0.5-20 Hz) component of COP data and the complexity of sEMG data from tibialis anterior muscle. In contrast, repeated practice under conflicts decreased the complexity of low-frequency (<0.5 Hz) component of COP data and the complexity of EEG data of parietal and occipital lobes, while repeated practice under congruent environment decreased the complexity of EEG data of parietal and temporal lobes. These results suggested nonlinear dynamics of cortical activity differed after balance practice under congruent and incongruent environments. Also, we found a positive correlation (1) between the complexity of high-frequency component of COP and the complexity of sEMG signals from calf muscles, and (2) between the complexity of low-frequency component of COP and the complexity of EEG signals. These results suggested the low- or high-component of COP might be related to central or muscular adjustment of postural control, respectively.
Collapse
Affiliation(s)
- Anke Hua
- Department of Sports Science, Zhejiang University, Hangzhou, China
- Sciences Cognitives et Sciences Affectives, University of Lille, Lille, France
| | - Guozheng Wang
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University, Taizhou, China
| | - Jingyuan Bai
- Department of Sports Science, Zhejiang University, Hangzhou, China
| | - Zengming Hao
- Department of Rehabilitation Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Liu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Jun Meng
- College of Control Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jian Wang
- Department of Sports Science, Zhejiang University, Hangzhou, China
- Center for Psychological Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Botelho AL, da Silva AMBR, da Silva MAMR, Cândido Dos Reis A. Assessment of neuromuscular fatigue through frequency analysis of the electromyographic signal of control participants and those with temporomandibular dysfunction treated with resilient or hard occlusal devices. J Prosthet Dent 2024; 131:233-240. [PMID: 35400505 DOI: 10.1016/j.prosdent.2021.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 10/18/2022]
Abstract
STATEMENT OF PROBLEM Muscle hyperactivity that leads to neuromuscular fatigue can be evaluated by electromyography. Whether treatment with occlusal devices can restore neuromuscular balance to patients with temporomandibular disorders (TMDs) is unclear. PURPOSE The purpose of this clinical study was to evaluate neuromuscular fatigue by analyzing the frequency of the electromyographic signal of the masseter and anterior temporalis muscles on both sides in healthy participants and those with TMD treated with a resilient or hard occlusal device. MATERIAL AND METHODS One hundred asymptomatic participants and 30 with TMD were divided into 2 groups: treated with a hard device or treated with a resilient device. All underwent electromyographic examination before and after treatment with the occlusal devices. RESULTS In both groups, the results showed statistically significant differences (P<.01) when the fatigue rate before and after treatment with an occlusal device was compared. CONCLUSIONS Treatment with both types of occlusal device was efficient in reducing the rate of neuromuscular fatigue in patients with TMDs.
Collapse
Affiliation(s)
- André Luís Botelho
- Post-Doc student, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.
| | | | | | - Andréa Cândido Dos Reis
- Professor, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
12
|
Shimura M, Mizumoto A, Xia Y, Shimomura Y. Multipoint surface electromyography measurement using bull's-eye electrodes for wide-area topographic analysis. J Physiol Anthropol 2023; 42:24. [PMID: 37891686 PMCID: PMC10612298 DOI: 10.1186/s40101-023-00342-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Surface electromyography (sEMG) is primarily used to analyze individual and neighboring muscle activity. However, using a broader approach can enable simultaneous measurement of multiple muscles, which is essential for understanding muscular coordination. Using the "bull's-eye electrode," which allows bipolar derivation without directional dependence, enables wide-area multipoint sEMG measurements. This study aims to establish a multipoint measurement system and demonstrate its effectiveness and evaluates forearm fatigue and created topographic maps during a grasping task. METHODS Nine healthy adults with no recent arm injuries or illnesses participated in this study. They performed grasping tasks using their dominant hand, while bull's-eye electrodes recorded their muscle activity. To validate the effectiveness of the system, we calculated the root mean squares of muscle activity and entropy, an indicator of muscle activity distribution, and compared them over time. RESULTS The entropy analysis demonstrated a significant time-course effect with increased entropy over time, suggesting increased forearm muscle uniformity, which is possibly indicative of fatigue. Topographic maps visually displayed muscle activity, revealing notable intersubject variations. DISCUSSION Bull's-eye electrodes facilitated the capture of nine homogeneous muscle activity points, enabling the creation of topographic images. The entropy increased progressively, suggesting an adaptive muscle coordination response to fatigue. Despite some limitations, such as inadequate measurement of the forearm muscles' belly, the system is an unconventional measurement method. CONCLUSION This study established a robust system for wide-area multipoint sEMG measurements using a bull's-eye electrode setup. This system effectively evaluates muscle fatigue and provides a comprehensive topographic view of muscle activity. These results mark a significant step towards developing a future multichannel sEMG system with enhanced measurement points and improved wearability. TRIAL REGISTRATION This study was approved by the Ethics Committee of Chiba University Graduate School of Engineering (acceptance number: R4-12, Acceptance date: November 04, 2022).
Collapse
Affiliation(s)
- Megumi Shimura
- Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba City, 2638522, Japan.
| | - Akihiko Mizumoto
- Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba City, 2638522, Japan
| | - Yali Xia
- Design Research Institute, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba City, 2638522, Japan
| | - Yoshihiro Shimomura
- Design Research Institute, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba City, 2638522, Japan
| |
Collapse
|
13
|
Kimoto A, Oishi Y, Machida M. A Wireless 2-Channel Layered EMG/NIRS Sensor System for Local Muscular Activity Evaluation. SENSORS (BASEL, SWITZERLAND) 2023; 23:8394. [PMID: 37896488 PMCID: PMC10610620 DOI: 10.3390/s23208394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023]
Abstract
A wireless 2-channel layered sensor system that enables electromyography (EMG) and near-infrared spectroscopy (NIRS) measurements at two local positions was developed. The layered sensor consists of a thin silver electrode and a photosensor consisting of a photoemitting diode (LED) or photodiode (PD). The EMG and NIRS signals were simultaneously measured using a pair of electrodes and photosensors for the LED and PD, respectively. Two local muscular activities are presented in detail using layered sensors. In the experiments, EMG and NIRS signals were measured for isometric constant and ramp contractions at each forearm using layered sensors. The results showed that local muscle activity analysis is possible using simultaneous EMG and NIRS signals at each local position.
Collapse
Affiliation(s)
- Akira Kimoto
- Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan (M.M.)
| | | | | |
Collapse
|
14
|
Kuber PM, Rashedi E. Alterations in Physical Demands During Virtual/Augmented Reality-Based Tasks: A Systematic Review. Ann Biomed Eng 2023; 51:1910-1932. [PMID: 37486385 DOI: 10.1007/s10439-023-03292-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023]
Abstract
The digital world has recently experienced a swift rise in worldwide popularity due to Virtual (VR) and Augmented Reality (AR) devices. However, concrete evidence about the effects of VR/AR devices on the physical workload imposed on the human body is lacking. We reviewed 27 articles that evaluated the physical impact of VR/AR-based tasks on the users using biomechanical sensing equipment and subjective tools. Findings revealed that movement and muscle demands (neck and shoulder) varied in seven and five studies while using VR, while in four and three studies during AR use, respectively, compared to traditional methods. User discomfort was also found in seven VR and three AR studies. Outcomes indicate that interface and interaction design, precisely target locations (gestures, viewing), design of virtual elements, and device type (location of CG as in Head-Mounted Displays) influence these alterations in neck and shoulder regions. Recommendations based on the review include developing comfortable reach envelopes for gestures, improving wearability, and studying temporal effects of repetitive movements (such as effects on fatigue and stability). Finally, a guideline is provided to assist researchers in conducting effective evaluations. The presented findings from this review could benefit designers/evaluations working towards developing more effective VR/AR products.
Collapse
Affiliation(s)
- Pranav Madhav Kuber
- Biomechanics and Ergonomics Lab, Industrial and Systems Engineering Department, Rochester Institute of Technology, 1 Lomb Memorial Dr, Rochester, NY, 14623, USA
| | - Ehsan Rashedi
- Biomechanics and Ergonomics Lab, Industrial and Systems Engineering Department, Rochester Institute of Technology, 1 Lomb Memorial Dr, Rochester, NY, 14623, USA.
| |
Collapse
|
15
|
Perpetuini D, Russo EF, Cardone D, Palmieri R, De Giacomo A, Pellegrino R, Merla A, Calabrò RS, Filoni S. Use and Effectiveness of Electrosuit in Neurological Disorders: A Systematic Review with Clinical Implications. Bioengineering (Basel) 2023; 10:680. [PMID: 37370612 PMCID: PMC10294955 DOI: 10.3390/bioengineering10060680] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Electrical stimulation through surface electrodes is a non-invasive therapeutic technique used to improve voluntary motor control and reduce pain and spasticity in patients with central nervous system injuries. The Exopulse Mollii Suit (EMS) is a non-invasive full-body suit with integrated electrodes designed for self-administered electrical stimulation to reduce spasticity and promote flexibility. The EMS has been evaluated in several clinical trials with positive findings, indicating its potential in rehabilitation. This review investigates the effectiveness of the EMS for rehabilitation and its acceptability by patients. The literature was collected through several databases following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. Positive effects of the garment on improving motor functions and reducing spasticity have been shown to be related to the duration of the administration period and to the dosage of the treatment, which, in turn, depend on the individual's condition and the treatment goals. Moreover, patients reported wellbeing during stimulation and a muscle-relaxing effect on the affected limb. Although additional research is required to determine the efficacy of this device, the reviewed literature highlights the EMS potential to improve the motor capabilities of neurological patients in clinical practice.
Collapse
Affiliation(s)
- David Perpetuini
- Department of Engineering and Geology, University G. D’Annunzio of Chieti-Pescara, 65127 Pescara, Italy; (D.P.); (D.C.); (A.M.)
| | - Emanuele Francesco Russo
- Padre Pio Foundation and Rehabilitation Centers, 71013 San Giovanni Rotondo, Italy; (E.F.R.); (S.F.)
| | - Daniela Cardone
- Department of Engineering and Geology, University G. D’Annunzio of Chieti-Pescara, 65127 Pescara, Italy; (D.P.); (D.C.); (A.M.)
| | - Roberta Palmieri
- Translational Biomedicine and Neuroscience Department (DiBraiN), University of Bari “Aldo Moro”, 70124 Bari, Italy; (R.P.); (A.D.G.)
| | - Andrea De Giacomo
- Translational Biomedicine and Neuroscience Department (DiBraiN), University of Bari “Aldo Moro”, 70124 Bari, Italy; (R.P.); (A.D.G.)
| | - Raffaello Pellegrino
- Department of Scientific Research, Campus Ludes, Off-Campus Semmelweis University, 6912 Lugano, Switzerland;
| | - Arcangelo Merla
- Department of Engineering and Geology, University G. D’Annunzio of Chieti-Pescara, 65127 Pescara, Italy; (D.P.); (D.C.); (A.M.)
| | | | - Serena Filoni
- Padre Pio Foundation and Rehabilitation Centers, 71013 San Giovanni Rotondo, Italy; (E.F.R.); (S.F.)
| |
Collapse
|
16
|
Babault N, Hitier M, Paizis C, Vieira DCL. Exploring Acute Changes in Hamstring EMG after Warm-up and Stretching Using a Multifractal Analysis. Med Sci Sports Exerc 2023; 55:1023-1033. [PMID: 36719665 DOI: 10.1249/mss.0000000000003128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION This study aimed to apply multifractal detrended fluctuation analysis (MFDFA) to surface EMG to detect neuromuscular changes after realistic warm-up procedures that was followed by various stretching exercises. METHODS Sixteen volunteers conducted two experimental sessions. Testing included two maximal voluntary contractions before, after a standardized warm-up, and after a stretching exercise (static or neurodynamic nerve gliding technique). EMG was registered on biceps femoris and semitendinosus muscles. EMG was analyzed using different parameters obtained from the singularity Hurst exponent function and multifractal power spectrum (both obtained from the multifractal detrended fluctuation analysis). RESULTS The Hurst exponent, α maximum, and peak value of the multifractal spectrum significantly decreased after warm-up as compared with baseline for both biceps femoris ( P = 0.003, P = 0.006, and P = 0.003, respectively) and semitendinosus ( P = 0.006, P = 0.013 and P = 0.01, respectively) muscles. No further alteration was obtained after static or neurodynamic nerve gliding stretching as compared with post-warm-up ( P = 1.0). No significant difference was obtained for Hurst exponent range, width, and asymmetry of the multifractal spectrum ( P > 0.05). CONCLUSIONS From the present results, EMG depicted multifractal features sensitive to detect neuromuscular changes after a warm-up procedure. An increase in multiscale complexity is revealed after warm-up without any further alteration after stretching. The multifractal spectrum depicted dominant small fluctuations that shifted toward slightly larger fluctuations that could be attributed to motor unit recruitment.
Collapse
|
17
|
Bonifati P, Baracca M, Menolotto M, Averta G, Bianchi M. A Multi-Modal Under-Sensorized Wearable System for Optimal Kinematic and Muscular Tracking of Human Upper Limb Motion. SENSORS (BASEL, SWITZERLAND) 2023; 23:3716. [PMID: 37050776 PMCID: PMC10098930 DOI: 10.3390/s23073716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Wearable sensing solutions have emerged as a promising paradigm for monitoring human musculoskeletal state in an unobtrusive way. To increase the deployability of these systems, considerations related to cost reduction and enhanced form factor and wearability tend to discourage the number of sensors in use. In our previous work, we provided a theoretical solution to the problem of jointly reconstructing the entire muscular-kinematic state of the upper limb, when only a limited amount of optimally retrieved sensory data are available. However, the effective implementation of these methods in a physical, under-sensorized wearable has never been attempted before. In this work, we propose to bridge this gap by presenting an under-sensorized system based on inertial measurement units (IMUs) and surface electromyography (sEMG) electrodes for the reconstruction of the upper limb musculoskeletal state, focusing on the minimization of the sensors' number. We found that, relying on two IMUs only and eight sEMG sensors, we can conjointly reconstruct all 17 degrees of freedom (five joints, twelve muscles) of the upper limb musculoskeletal state, yielding a median normalized RMS error of 8.5% on the non-measured joints and 2.5% on the non-measured muscles.
Collapse
Affiliation(s)
- Paolo Bonifati
- Research Center “E. Piaggio”, Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56126 Pisa, Italy
| | - Marco Baracca
- Research Center “E. Piaggio”, Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56126 Pisa, Italy
| | - Mariangela Menolotto
- Research Center “E. Piaggio”, Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56126 Pisa, Italy
| | - Giuseppe Averta
- Department of Control and Computer Engineering, Politecnico di Torino, 10129 Torino, Italy
| | - Matteo Bianchi
- Research Center “E. Piaggio”, Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56126 Pisa, Italy
| |
Collapse
|
18
|
Hua A, Bai J, Hao Z, Yang Y, Zhang R, Wang J. Linear spectrum and non-linear complexity features of lumbar muscle surface electromyography between people with and without non-specific chronic low back pain during Biering-Sorensen test. J Electromyogr Kinesiol 2023; 69:102742. [PMID: 36709643 DOI: 10.1016/j.jelekin.2023.102742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/13/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
PURPOSE This study aimed to investigate the electromyographic parameters of lumbar muscles during the Biering-Sorensen test (BST) in people with and without non-specific chronic low back pain (NCLBP). MATERIALS AND METHODS Thirteen healthy controls and thirteen NCLBP patients participated in the current study, where they performed the 90s-BST, while the surface electromyography (sEMG) was recorded from the erector spinae (ES) at L1 and L3 level and lumbar multifidus (LM) at L5 level, bilaterally. Spectral and nonlinear analyses were applied by calculating mean power frequency (MPF), fractal dimension (FD) and the percentage of determinism (%DET) in the 10-second non-overlapping time-windows and EMG-EMG coherence during the first half and second half of the BST. Also, the slopes of the linear fitting curves of MPF, FD and %DET were calculated. RESULTS NCLBP group had significantly lower rates of changes in MPF, FD and %DET compared to asymptomatic controls in the ES(L3) and LM. Coherence in left-right LM and in the right ES-LM increased significantly in the gamma band in the Control group with no increase in the NCLBP group. CONCLUSIONS Our findings indicated that compared to people with NCLBP, the sEMG signals of lumbar muscles of people without NCLBP were more regular and less complex during the 90s-BST.
Collapse
Affiliation(s)
- Anke Hua
- Department of Sports Science, Zhejiang University, Hangzhou, China
| | - Jingyuan Bai
- Department of Sports Science, Zhejiang University, Hangzhou, China
| | - Zengming Hao
- Department of Rehabilitation Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Yang
- Department of Sports Science, Zhejiang University, Hangzhou, China
| | | | - Jian Wang
- Department of Sports Science, Zhejiang University, Hangzhou, China; Center for Psychological Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
19
|
Zang J. Smart Sports Outward Bound Training Assistant System Based on WSNs. INTERNATIONAL JOURNAL OF DISTRIBUTED SYSTEMS AND TECHNOLOGIES 2023. [DOI: 10.4018/ijdst.317939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The outward-bound training has been a popular manner to exercise in daily life. However, there lacks an intelligent assistant system to monitor the real-time status of users to avoid accidents during training. In order to fill this gap, this paper established an intelligent system to monitor fatigue status during outward-bound training by using surface electromyography (sEMG) signals. The system consists of three parts: a wearable device, edge node, and cloud server. First, the wearable device collects sEMG signals. Second, the edge node processes the collected sEMG signals and sends the sEMG signal features to the cloud server. Finally, the cloud server returns the results to edge node according to a stored classification model that learnt from massive historical sEMG signals. The experimental results show the effectiveness of the proposed system.
Collapse
|
20
|
Liddy J, Busa M. Considerations for Applying Entropy Methods to Temporally Correlated Stochastic Datasets. ENTROPY (BASEL, SWITZERLAND) 2023; 25:306. [PMID: 36832672 PMCID: PMC9955719 DOI: 10.3390/e25020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
The goal of this paper is to highlight considerations and provide recommendations for analytical issues that arise when applying entropy methods, specifically Sample Entropy (SampEn), to temporally correlated stochastic datasets, which are representative of a broad range of biomechanical and physiological variables. To simulate a variety of processes encountered in biomechanical applications, autoregressive fractionally integrated moving averaged (ARFIMA) models were used to produce temporally correlated data spanning the fractional Gaussian noise/fractional Brownian motion model. We then applied ARFIMA modeling and SampEn to the datasets to quantify the temporal correlations and regularity of the simulated datasets. We demonstrate the use of ARFIMA modeling for estimating temporal correlation properties and classifying stochastic datasets as stationary or nonstationary. We then leverage ARFIMA modeling to improve the effectiveness of data cleaning procedures and mitigate the influence of outliers on SampEn estimates. We also emphasize the limitations of SampEn to distinguish among stochastic datasets and suggest the use of complementary measures to better characterize the dynamics of biomechanical variables. Finally, we demonstrate that parameter normalization is not an effective procedure for increasing the interoperability of SampEn estimates, at least not for entirely stochastic datasets.
Collapse
Affiliation(s)
- Joshua Liddy
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Michael Busa
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
21
|
Li J, Wang J, Wang T, Kong W, Xi X. Quantification of body ownership awareness induced by the visual movement illusion of the lower limbs: a study of electroencephalogram and surface electromyography. Med Biol Eng Comput 2023; 61:951-965. [PMID: 36662378 DOI: 10.1007/s11517-022-02744-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 12/15/2022] [Indexed: 01/21/2023]
Abstract
The visual movement illusion (VMI) is a subjective experience. This illusion is produced by watching the subject's motion video. At the same time, VMI evokes awareness of body ownership. We applied the power spectral density (PSD) matrix and the partial directed correlation (PDC) matrix to build the PPDC matrix for the γ2 band (34-98.5 Hz), combining cerebral cortical and musculomotor cortical complexity and PPDC to quantify the degree of body ownership. Thirty-five healthy subjects were recruited to participate in this experiment. The subjects' electroencephalography (EEG) and surface electromyography (sEMG) data were recorded under resting conditions, observation conditions, illusion conditions, and actual seated front-kick movements. The results show the following: (1) VMI activates the cerebral cortex to some extent; (2) VMI enhances cortical muscle excitability in the rectus femoris and medial vastus muscles; (3) VMI induces a sense of body ownership; (4) the use of PPDC values, fuzzy entropy values of muscles, and fuzzy entropy values of the cerebral cortex can quantify whether VMI induces awareness of body ownership. These results illustrate that PPDC can be used as a biomarker to show that VMI affects changes in the cerebral cortex and as a quantitative tool to show whether body ownership awareness arises.
Collapse
Affiliation(s)
- Jing Li
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China.,Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou, 310018, China
| | - Junhong Wang
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China.,Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou, 310018, China
| | - Ting Wang
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China.,Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou, 310018, China
| | - Wanzeng Kong
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou, 310018, China
| | - Xugang Xi
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China. .,Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou, 310018, China.
| |
Collapse
|
22
|
Yiu EML, Lau GWH, Wang F. Fatigue-Related Change in Surface Electromyographic Activities of the Perilaryngeal Muscles. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023; 66:98-109. [PMID: 36580552 DOI: 10.1044/2022_jslhr-22-00283] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
PURPOSE This study set out to quantify the fatigue-related changes in surface electromyographic (sEMG) activities of the perilaryngeal muscles following a vocal loading task. METHOD Thirty-six young healthy participants (M age = 22.4 years) with normal voice performed karaoke singing for at least 100 min. Before the singing task, all participants underwent the sEMG measure and completed a Perceived Vocal Fatigue Score (P-VFS) questionnaire. After the singing task, all participants were immediately measured with the P-VFS again. Half of the participants were then measured for their sEMG immediately after their karaoke singing task, and the other half were given 20 min of rest before undertaking the sEMG measure. The P-VFS and the median frequency (MDF) of the sEMG signals collected from the suprahyoid, infrahyoid, and sternocleidomastoid muscles before and after the singing task were compared using a linear mixed-effects model. RESULTS All participants reported a perceived vocal fatigue after singing, with a significantly increased P-VFS. Compared with the presinging baseline, the MDF of the sEMG signals in perilaryngeal muscles was significantly lower immediately after the singing task. Such a significant difference was also found after 20 min following the singing task. CONCLUSIONS The MDF analysis of the sEMG signals could identify and quantify the performance vocal fatigue contributed by perilaryngeal muscles following a vocal loading task. The findings also showed that such fatigue in perilaryngeal muscles, as far as sEMG activities are concerned, can last for at least 20 min.
Collapse
Affiliation(s)
- Edwin M-L Yiu
- Voice Research Laboratory, Faculty of Education, The University of Hong Kong, Pokfulam
| | - Gary W H Lau
- Voice Research Laboratory, Faculty of Education, The University of Hong Kong, Pokfulam
| | - Feifan Wang
- Voice Research Laboratory, Faculty of Education, The University of Hong Kong, Pokfulam
| |
Collapse
|
23
|
Perpetuini D, Formenti D, Cardone D, Trecroci A, Rossi A, Di Credico A, Merati G, Alberti G, Di Baldassarre A, Merla A. Can Data-Driven Supervised Machine Learning Approaches Applied to Infrared Thermal Imaging Data Estimate Muscular Activity and Fatigue? SENSORS (BASEL, SWITZERLAND) 2023; 23:832. [PMID: 36679631 PMCID: PMC9863897 DOI: 10.3390/s23020832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Surface electromyography (sEMG) is the acquisition, from the skin, of the electrical signal produced by muscle activation. Usually, sEMG is measured through electrodes with electrolytic gel, which often causes skin irritation. Capacitive contactless electrodes have been developed to overcome this limitation. However, contactless EMG devices are still sensitive to motion artifacts and often not comfortable for long monitoring. In this study, a non-invasive contactless method to estimate parameters indicative of muscular activity and fatigue, as they are assessed by EMG, through infrared thermal imaging (IRI) and cross-validated machine learning (ML) approaches is described. Particularly, 10 healthy participants underwent five series of bodyweight squats until exhaustion interspersed by 1 min of rest. During exercising, the vastus medialis activity and its temperature were measured through sEMG and IRI, respectively. The EMG average rectified value (ARV) and the median frequency of the power spectral density (MDF) of each series were estimated through several ML approaches applied to IRI features, obtaining good estimation performances (r = 0.886, p < 0.001 for ARV, and r = 0.661, p < 0.001 for MDF). Although EMG and IRI measure physiological processes of a different nature and are not interchangeable, these results suggest a potential link between skin temperature and muscle activity and fatigue, fostering the employment of contactless methods to deliver metrics of muscular activity in a non-invasive and comfortable manner in sports and clinical applications.
Collapse
Affiliation(s)
- David Perpetuini
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Damiano Formenti
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via Dunant, 3, 21100 Varese, Italy
| | - Daniela Cardone
- Department of Engineering and Geology, University “G. d’Annunzio” of Chieti-Pescara, 65127 Pescara, Italy
| | - Athos Trecroci
- Department of Biomedical Sciences for Health, University of Milan, 20129 Milan, Italy
| | - Alessio Rossi
- Department of Computer Science, University of Pisa, 56127 Pisa, Italy
| | - Andrea Di Credico
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Giampiero Merati
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via Dunant, 3, 21100 Varese, Italy
- IRCCS Fondazione Don Carlo Gnocchi, 20148 Milano, Italy
| | | | - Angela Di Baldassarre
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Arcangelo Merla
- Department of Engineering and Geology, University “G. d’Annunzio” of Chieti-Pescara, 65127 Pescara, Italy
| |
Collapse
|
24
|
Makris KC, Charisiadis P, Delplancke T, Efthymiou N, Giuliani A. Diurnal Nonlinear Recurrence Metrics of Skin Temperature and Their Association with Metabolic Hormones in Contrasting Climate Settings: A Randomized Cross-Over Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15195. [PMID: 36429912 PMCID: PMC9690349 DOI: 10.3390/ijerph192215195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
The urban overheating phenomenon in Mediterranean cities is a societal challenge with vast implications for the protection of public health. An additional analysis of the pilot TEMP randomized 2 × 2 cross-over trial was set up, using wearable sensor-based skin temperature measurements (n = 14). The study objectives were to: (i) assess the recurrence patterns of skin temperature measurements in individuals spending time in two climatologically contrasting settings (urban versus mountainous), and (ii) evaluate the association between the diurnal nonlinear recurrence quantification analysis (RQA) metrics and metabolic hormone levels. The intervention was a short-term stay (5-7 days) in a mountainous, climate-cooler setting (range 600-900 m altitude), which is about a 1 h drive from the main urban centres of Cyprus. The RQA analysis showed a blunting phenomenon on the nonlinear temporal dynamics of skin temperature time series observed in the urban setting. Compared with the mountainous setting, a more stable (and thus less adaptive) profile of skin temperature dynamics in the urban setting appeared, being less deterministic and with a smaller degree of complexity. No significant (p > 0.05) associations were observed between the leptin or cortisol and any of the skin temperature dynamical descriptors. However, there were marginal associations between the adiponectin and laminarity (beta = 0.24, 95%CI: -0.02, 0.50, p = 0.07) and with determinism (beta = 0.23, 95%CI: -0.037, 0.50, p = 0.09). We found dysregulations in skin temperature temporal dynamics of the study population while residing in the urban setting when compared with the cooler mountainous setting; these dysregulations took the form of reduced cycle duration and complexity, while skin temperature dynamics became less responsive to perturbations and less regular in magnitude. More research is needed to better understand heat stress temporal dynamics and their influence on human health. Trial registration: This trial is registered with ClinicalTrials.gov; number: NCT03625817.
Collapse
Affiliation(s)
- Konstantinos C. Makris
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, 3041 Limassol, Cyprus
| | - Pantelis Charisiadis
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, 3041 Limassol, Cyprus
| | - Thibaut Delplancke
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, 3041 Limassol, Cyprus
| | - Nikolaos Efthymiou
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, 3041 Limassol, Cyprus
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
25
|
Zhou B, Chen B, Shi H, Xue L, Ao Y, Ding L. SEMG-based fighter pilot muscle fatigue analysis and operation performance research. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
26
|
Wang L, Song X, Yang H, Wang C, Shao Q, Tao H, Qiao M, Niu W, Liu X. Are the antagonist muscle fatigued during a prolonged isometric fatiguing elbow flexion at very low forces for young adults? Front Physiol 2022; 13:956639. [PMID: 36277214 PMCID: PMC9585301 DOI: 10.3389/fphys.2022.956639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to examine whether antagonist muscles may be fatigued during a prolonged isometric fatiguing elbow flexion at very low forces. Twelve healthy male subjects sustained an isometric elbow flexion at 10% maximal voluntary contraction torque until exhaustion while multichannel electromyographic signals were collected from the biceps brachii (BB) and triceps brachii (TB). Muscle fiber conduction velocity (CV) and fractal dimension (FD) of both muscles were calculated to reflect peripheral and central fatigue. CV and FD of TB as well as FD of BB decreased progressively during the sustained fatiguing contraction, while the CV of BB declined at the beginning of the contraction and then increased progressively until the end of the contraction. The result may indicate that during the sustained low-force isometric fatiguing contraction, antagonist muscle may be peripherally fatigued, and changes in coactivation activities were modulated not only by central neuronal mechanisms of common drive but also by peripheral metabolic factors.
Collapse
Affiliation(s)
- Lejun Wang
- Sport and Health Research Center, Physical Education Department, Tongji University, Shanghai, China
- *Correspondence: Lejun Wang, ; Xiaodong Liu,
| | - Xiaoqian Song
- Sport and Health Research Center, Physical Education Department, Tongji University, Shanghai, China
| | - Hua Yang
- Sport and Health Research Center, Physical Education Department, Tongji University, Shanghai, China
| | - Ce Wang
- Sport and Health Research Center, Physical Education Department, Tongji University, Shanghai, China
| | - Qineng Shao
- Sport and Health Research Center, Physical Education Department, Tongji University, Shanghai, China
| | - Haifeng Tao
- Sport and Health Research Center, Physical Education Department, Tongji University, Shanghai, China
| | - Minjie Qiao
- Sport and Health Research Center, Physical Education Department, Tongji University, Shanghai, China
| | - Wenxin Niu
- School of Medicine, Tongji University, Shanghai, China
| | - Xiaodong Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Lejun Wang, ; Xiaodong Liu,
| |
Collapse
|
27
|
Usefulness of Surface Electromyography Complexity Analyses to Assess the Effects of Warm-Up and Stretching during Maximal and Sub-Maximal Hamstring Contractions: A Cross-Over, Randomized, Single-Blind Trial. BIOLOGY 2022; 11:biology11091337. [PMID: 36138816 PMCID: PMC9495372 DOI: 10.3390/biology11091337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022]
Abstract
This study aimed to apply different complexity-based methods to surface electromyography (EMG) in order to detect neuromuscular changes after realistic warm-up procedures that included stretching exercises. Sixteen volunteers conducted two experimental sessions. They were tested before, after a standardized warm-up, and after a stretching exercise (static or neuromuscular nerve gliding technique). Tests included measurements of the knee flexion torque and EMG of biceps femoris (BF) and semitendinosus (ST) muscles. EMG was analyzed using the root mean square (RMS), sample entropy (SampEn), percentage of recurrence and determinism following a recurrence quantification analysis (%Rec and %Det) and a scaling parameter from a detrended fluctuation analysis. Torque was significantly greater after warm-up as compared to baseline and after stretching. RMS was not affected by the experimental procedure. In contrast, SampEn was significantly greater after warm-up and stretching as compared to baseline values. %Rec was not modified but %Det for BF muscle was significantly greater after stretching as compared to baseline. The a scaling parameter was significantly lower after warm-up as compared to baseline for ST muscle. From the present results, complexity-based methods applied to the EMG give additional information than linear-based methods. They appeared sensitive to detect EMG complexity increases following warm-up.
Collapse
|
28
|
A Systematic Review on Evaluation Strategies for Field Assessment of Upper-Body Industrial Exoskeletons: Current Practices and Future Trends. Ann Biomed Eng 2022; 50:1203-1231. [PMID: 35916980 DOI: 10.1007/s10439-022-03003-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/30/2022] [Indexed: 01/02/2023]
Abstract
With rising manual work demands, physical assistance at the workplace is crucial, wherein the use of industrial exoskeletons (i-EXOs) could be advantageous. However, outcomes of numerous laboratory studies may not be directly translated to field environments. To explore this discrepancy, we conducted a systematic review including 31 studies to identify and compare the approaches, techniques, and outcomes within field assessments of shoulder and back support i-EXOs. Findings revealed that the subjective approaches [i.e., discomfort (23), usability (22), acceptance/perspectives (21), risk of injury (8), posture (3), perceived workload (2)] were reported more common (27) compared to objective (15) approaches [muscular demand (14), kinematics (8), metabolic costs (5)]. High variability was also observed in the experimental methodologies, including control over activity, task physics/duration, sample size, and reported metrics/measures. In the current study, the detailed approaches, their subject-related factors, and observed trends have been discussed. In sum, a new guideline, including tools/technologies has been proposed that could be utilized for field evaluation of i-EXOs. Lastly, we discussed some of the common technical challenges experimenters face in evaluating i-EXOs in field environments. Efforts presented in this study seek to improve the generalizability in testing and implementing i-EXOs.
Collapse
|
29
|
Sasidharan D, G V, Ramakrishnan S. Muscle Fatigue Analysis by Visualization of Dynamic Surface EMG Signals Using Markov Transition Field. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:3611-3614. [PMID: 36086577 DOI: 10.1109/embc48229.2022.9871981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Muscle fatigue analysis is important in the diagnosis of neuromuscular diseases. Analysis of surface electromyography (sEMG) signals by non-linear probabilistic approach is useful in studying their transitions and thus the neuromuscular system. In this study, a method to visualize sEMG signals using Markov transition field (MTF) under fatigue conditions is proposed. sEMG signals are acquired from 45 healthy participants during biceps curl exercise. They are filtered and divided into ten equal segments. Markov transition matrix is constructed and corresponding MTF image is generated. The average self-transition probability is extracted and compared for both non-fatigue and fatigue segments. It is observed that the extracted feature shows high statistical significance with p value less than 0.001. The increase in average self-transition probability under fatigue condition correlates with the reduction in the degree of signal complexity. Thus, encoding of sEMG signals to images is helpful in analyzing the complexity of the neuromuscular system. Clinical Relevance- This approach may be helpful in analyzing muscle fatigue related with various myoneural conditions.
Collapse
|
30
|
Assessment of a Passive Lumbar Exoskeleton in Material Manual Handling Tasks under Laboratory Conditions. SENSORS 2022; 22:s22114060. [PMID: 35684682 PMCID: PMC9185583 DOI: 10.3390/s22114060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 12/10/2022]
Abstract
Manual material handling tasks in industry cause work-related musculoskeletal disorders. Exoskeletons are being introduced to reduce the risk of musculoskeletal injuries. This study investigated the effect of using a passive lumbar exoskeleton in terms of moderate ergonomic risk. Eight participants were monitored by electromyogram (EMG) and motion capture (MoCap) while performing tasks with and without the lumbar exoskeleton. The results showed a significant reduction in the root mean square (VRMS) for all muscles tracked: erector spinae (8%), semitendinosus (14%), gluteus (5%), and quadriceps (10.2%). The classic fatigue parameters showed a significant reduction in the case of the semitendinosus: 1.7% zero-crossing rate, 0.9% mean frequency, and 1.12% median frequency. In addition, the logarithm of the normalized Dimitrov’s index showed reductions of 11.5, 8, and 14% in erector spinae, semitendinosus, and gluteus, respectively. The calculation of range of motion in the relevant joints demonstrated significant differences, but in almost all cases, the differences were smaller than 10%. The findings of the study indicate that the passive exoskeleton reduces muscle activity and introduces some changes of strategies for motion. Thus, EMG and MoCap appear to be appropriate measurements for designing an exoskeleton assessment procedure.
Collapse
|
31
|
Direct Effect of Local Cryotherapy on Muscle Stimulation, Pain and Strength in Male Office Workers with Lateral Epicondylitis, Non-Randomized Clinical Trial Study. Healthcare (Basel) 2022; 10:healthcare10050879. [PMID: 35628016 PMCID: PMC9140546 DOI: 10.3390/healthcare10050879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Local cryotherapy (LC) is one of the physiotherapeutic methods used in the conservative treatment of lateral epicondylitis (LE). The aim of the study was to verify the direct effect of a single LC procedure on the clinical symptoms of lateral epicondylitis enthesopathy (pain, pain free grip, PFG) and its effect on the bioelectrical properties of the wrist extensor muscles at rest, on maximal contraction and isometric contraction during fatigue. Methods: The study group was 28 men (35.4 ± 6.13 years) with confirmed unilateral epicondylitis. The performed procedures included the assessment of pain (visual analogue scale, VAS), PFG and ARMS (root-mean-square amplitude) and mean frequencies (MNF) of the sEMG signal before (T0) and after (T1) LC on the side with enthesopathy (ECRE) and without enthesopathy (ECRN/E). Results: There was an increase in the ARMS values of the signals recorded during rest and MVC from the ECR muscles both with and without enthesopathy (p = 0.0001, p = 0.006), an increased PFG after LC only on the side with LE (p < 0.0001) and decreased pain (p < 0.0001). During isometric fatigue contraction, a higher ARMS on both the ECRE side (p < 0.0001) and the ECRN/E side (p < 0.0001) was observed after LC treatment, and a lower MNF was observed on both the ECRN/E side (p < 0.0001) and the ECRE side (p < 0.0001) after LC. Conclusions: LC reduces the pain and increases PFG and muscle excitation expressed by ARMS and seems to delay muscle fatigue.
Collapse
|
32
|
Estimation of mean and median frequency from synthetic sEMG signals: Effects of different spectral shapes and noise on estimation methods. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Qassim HM, Hasan WZW, Ramli HR, Harith HH, Mat LNI, Ismail LI. Proposed Fatigue Index for the Objective Detection of Muscle Fatigue Using Surface Electromyography and a Double-Step Binary Classifier. SENSORS 2022; 22:s22051900. [PMID: 35271046 PMCID: PMC8914984 DOI: 10.3390/s22051900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022]
Abstract
The objective detection of muscle fatigue reports the moment at which a muscle fails to sustain the required force. Such a detection prevents any further injury to the muscle following fatigue. However, the objective detection of muscle fatigue still requires further investigation. This paper presents an algorithm that employs a new fatigue index for the objective detection of muscle fatigue using a double-step binary classifier. The proposed algorithm involves analyzing the acquired sEMG signals in both the time and frequency domains in a double-step investigation. The first step involves calculating the value of the integrated EMG (IEMG) to determine the continuous contraction of the muscle being investigated. It was found that the IEMG value continued to increase with prolonged muscle contraction and progressive fatigue. The second step involves differentiating between the high-frequency components (HFC) and low-frequency components (LFC) of the EMG, and calculating the fatigue index. Basically, the segmented EMG signal was filtered by two band-pass filters separately to produce two sub-signals, namely, a high-frequency sub-signal (HFSS) and a low-frequency sub-signal (LFSS). Then, the instantaneous mean amplitude (IMA) was calculated for the two sub-signals. The proposed algorithm indicates that the IMA of the HFSS tends to decrease during muscle fatigue, while the IMA of the LFSS tends to increase. The fatigue index represents the difference between the IMA values of the LFSS and HFSS, respectively. Muscle fatigue was found to be present and was objectively detected when the value of the proposed fatigue index was equal to or greater than zero. The proposed algorithm was tested on 75 EMG signals that were extracted from 75 middle deltoid muscles. The results show that the proposed algorithm had an accuracy of 94.66% in distinguishing between conditions of muscle fatigue and non-fatigue.
Collapse
Affiliation(s)
- Hassan M. Qassim
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (H.M.Q.); (H.R.R.); (L.I.I.)
- Department of Medical Instrumentation Engineering, Technical Engineering College of Mosul, Northern Technical University, Mosul 41001, Iraq
| | - Wan Zuha Wan Hasan
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (H.M.Q.); (H.R.R.); (L.I.I.)
- Correspondence:
| | - Hafiz R. Ramli
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (H.M.Q.); (H.R.R.); (L.I.I.)
| | - Hazreen Haizi Harith
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Liyana Najwa Inche Mat
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Luthffi Idzhar Ismail
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (H.M.Q.); (H.R.R.); (L.I.I.)
| |
Collapse
|
34
|
Bajelani K, Arshi AR, Akhavan AN. Influence of compression garments on fatigue behaviour during running based on nonlinear dynamical analysis. Sports Biomech 2022. [DOI: 10.1080/14763141.2021.2015426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kourosh Bajelani
- Biomechanics and Sports Engineering Groups, Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Ahmed R. Arshi
- Biomechanics and Sports Engineering Groups, Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Amir N. Akhavan
- Management, Science and Technology Department, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
35
|
Gaikwad A, Nadgere J, Tamore S. Effect of muscle deprogrammers on muscle activity of masseter and temporalis muscles using surface electromyography: A randomized crossover clinical study. J Int Oral Health 2022. [DOI: 10.4103/jioh.jioh_208_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
36
|
Goubault E, Martinez R, Bouffard J, Dowling-Medley J, Begon M, Dal Maso F. Shoulder electromyography-based indicators to assess manifestation of muscle fatigue during laboratory-simulated manual handling task. ERGONOMICS 2022; 65:118-133. [PMID: 34279186 DOI: 10.1080/00140139.2021.1958013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Muscle fatigue is a risk factor for developing shoulder musculoskeletal disorders. The aim of this study was to identify shoulder electromyographic indicators that are most indicative of muscle fatigue during a laboratory simulated manual handling task. Thirty-two participants were equipped with electromyographic electrodes on 10 shoulder muscles and moved boxes for 45-minutes. The modified rate of perceived exertion (mRPE) was assessed every 5-minutes and multivariate linear regressions were performed between myoelectric manifestation of fatigue (MMF) and the mRPE scores. During a manual handling task representative of industry working conditions, spectral entropy, median frequency, and mobility were the electromyographic indicators that explained the largest percentage of the mRPE. Overall, the deltoids, biceps and upper trapezius were the muscles that most often showed significant changes over time in their electromyographic indicators. The combination of these three indicators may improve the accuracy for the assessment of MMF during manual handling. Practitioner Summary: To date, muscle fatigue has primarily been assessed during tasks done to exhaustion, which are not representative of typical working conditions. During a manual handling task representative of industry working conditions, EMG-derived spectral entropy, and median frequency, both extracted from time-frequency analysis, and mobility extracted from time domain, were the best indicators of the manifestation of muscle fatigue.
Collapse
Affiliation(s)
- Etienne Goubault
- Laboratoire de Simulation et Modélisation du Mouvement, École de Kinésiologie et des sciences de l'activité physique, Université de Montréal, Laval, Canada
| | - Romain Martinez
- Laboratoire de Simulation et Modélisation du Mouvement, École de Kinésiologie et des sciences de l'activité physique, Université de Montréal, Laval, Canada
| | - Jason Bouffard
- Département de Kinésiologie, Faculté de Médecine, Université Laval, Québec, Canada
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration (CIRRIS), Université Laval, Québec, Canada
| | - Jennifer Dowling-Medley
- Laboratoire de Simulation et Modélisation du Mouvement, École de Kinésiologie et des sciences de l'activité physique, Université de Montréal, Laval, Canada
| | - Mickaël Begon
- Laboratoire de Simulation et Modélisation du Mouvement, École de Kinésiologie et des sciences de l'activité physique, Université de Montréal, Laval, Canada
- Sainte-Justine Hospital Research Center, Montreal, Canada
| | - Fabien Dal Maso
- Laboratoire de Simulation et Modélisation du Mouvement, École de Kinésiologie et des sciences de l'activité physique, Université de Montréal, Laval, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage
| |
Collapse
|
37
|
A hybrid deep transfer learning-based approach for Parkinson's disease classification in surface electromyography signals. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103161] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Ravier P, Dávalos A, Jabloun M, Buttelli O. The Refined Composite Downsampling Permutation Entropy Is a Relevant Tool in the Muscle Fatigue Study Using sEMG Signals. ENTROPY 2021; 23:e23121655. [PMID: 34945961 PMCID: PMC8700437 DOI: 10.3390/e23121655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022]
Abstract
Surface electromyography (sEMG) is a valuable technique that helps provide functional and structural information about the electric activity of muscles. As sEMG measures output of complex living systems characterized by multiscale and nonlinear behaviors, Multiscale Permutation Entropy (MPE) is a suitable tool for capturing useful information from the ordinal patterns of sEMG time series. In a previous work, a theoretical comparison in terms of bias and variance of two MPE variants—namely, the refined composite MPE (rcMPE) and the refined composite downsampling (rcDPE), was addressed. In the current paper, we assess the superiority of rcDPE over MPE and rcMPE, when applied to real sEMG signals. Moreover, we demonstrate the capacity of rcDPE in quantifying fatigue levels by using sEMG data recorded during a fatiguing exercise. The processing of four consecutive temporal segments, during biceps brachii exercise maintained at 70% of maximal voluntary contraction until exhaustion, shows that the 10th-scale of rcDPE was capable of better differentiation of the fatigue segments. This scale actually brings the raw sEMG data, initially sampled at 10 kHz, to the specific 0–500 Hz sEMG spectral band of interest, which finally reveals the inner complexity of the data. This study promotes good practices in the use of MPE complexity measures on real data.
Collapse
|
39
|
Retentive capacity of power output and linear versus non-linear mapping of power loss in the isotonic muscular endurance test. Sci Rep 2021; 11:22677. [PMID: 34811406 PMCID: PMC8608821 DOI: 10.1038/s41598-021-02116-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
The limit of dynamic endurance during repetitive contractions has been referred to as the point of muscle fatigue, which can be measured by mechanical and electrophysiological parameters combined with subjective estimates of load tolerance for revealing the human real-world capacity required to work continuously. In this study, an isotonic muscular endurance (IME) testing protocol under a psychophysiological fatigue criterion was developed for measuring the retentive capacity of the power output of lower limb muscles. Additionally, to guide the development of electrophysiological evaluation methods, linear and non-linear techniques for creating surface electromyography (sEMG) models were compared in terms of their ability to estimate muscle fatigue. Forty healthy college-aged males performed three trials of an isometric peak torque test and one trial of an IME test for the plantar flexors and knee and hip extensors. Meanwhile, sEMG activity was recorded from the medial gastrocnemius, lateral gastrocnemius, vastus medialis, rectus femoris, vastus lateralis, gluteus maximus, and biceps femoris of the right leg muscles. Linear techniques (amplitude-based parameters, spectral parameters, and instantaneous frequency parameters) and non-linear techniques (a multi-layer perception neural network) were used to predict the time-dependent power output during dynamic contractions. Two mechanical manifestations of muscle fatigue were observed in the IME tests, including power output reduction between the beginning and end of the test and time-dependent progressive power loss. Compared with linear mapping (linear regression) alone or a combination of sEMG variables, non-linear mapping of power loss during dynamic contractions showed significantly higher signal-to-noise ratios and correlation coefficients between the actual and estimated power output. Muscular endurance required in real-world activities can be measured by considering the amount of work produced or the activity duration via the recommended IME testing protocol under a psychophysiological termination criterion. Non-linear mapping techniques provide more powerful mapping of power loss compared with linear mapping in the IME testing protocol.
Collapse
|
40
|
Lung CW, Liau BY, Peters JA, He L, Townsend R, Jan YK. Effects of various walking intensities on leg muscle fatigue and plantar pressure distributions. BMC Musculoskelet Disord 2021; 22:831. [PMID: 34579699 PMCID: PMC8477480 DOI: 10.1186/s12891-021-04705-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/04/2021] [Indexed: 01/14/2023] Open
Abstract
Background Physical activity may benefit health and reduce risk for chronic complications in normal and people with diabetes and peripheral vascular diseases. However, it is unclear whether leg muscle fatigue after weight-bearing physical activities, such as brisk walking, may increase risk for plantar tissue injury. In the literature, there is no evidence on the effect of muscle fatigue on plantar pressure after various walking intensities. The objectives of this study were to investigate the effects of various walking intensities on leg muscle fatigue and plantar pressure patterns. Methods A 3 × 2 factorial design, including 3 walking speeds (1.8 (slow and normal walking), 3.6 (brisk walking), and 5.4 (slow running) mph) and 2 walking durations (10 and 20 min) for a total of 6 walking intensities, was tested in 12 healthy participants in 3 consecutive weeks. The median frequency and complexity of electromyographic (EMG) signals of tibialis anterior (TA) and gastrocnemius medialis (GM) were used to quantify muscle fatigue. Fourier transform was used to compute the median frequency and multiscale entropy was used to calculate complexity of EMG signals. Peak plantar pressure (PPP) values at the 4 plantar regions (big toe, first metatarsal head, second metatarsal head, and heel) were calculated. Results Two-way ANOVA showed that the walking speed (at 1.8, 3.6, 5.4 mph) significantly affected leg muscle fatigue, and the duration factor (at 10 and 20 min) did not. The one-way ANOVA showed that there were four significant pairwise differences of the median frequency of TA, including walking speed of 1.8 and 3.6 mph (185.7 ± 6.1 vs. 164.9 ± 3.0 Hz, P = 0.006) and 1.8 and 5.4 mph (185.7 ± 6.1 vs. 164.5 ± 5.5 Hz, P = 0.006) for the 10-min duration; and walking speed of 1.8 and 3.6 mph (180.0 ± 5.9 vs. 163.1 ± 4.4 Hz, P = 0.024) and 1.8 and 5.4 mph (180.0 ± 5.9 vs. 162.8 ± 4.9 Hz, P = 0.023) for the 20-min duration. The complexity of TA showed a similar trend with the median frequency of TA. The median frequency of TA has a significant negative correlation with PPP on the big toe ( r = -0.954, P = 0.003) and the first metatarsal head ( r = -0.896, P = 0.016). Conclusions This study demonstrated that brisk walking and slow running speeds (3.6 and 5.4 mph) cause an increase in muscle fatigue of TA compared to slow walking speed (1.8 mph); and the increased muscle fatigue is significantly related to a higher PPP.
Collapse
Affiliation(s)
- Chi-Wen Lung
- Rehabilitation Engineering Lab, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA.,Department of Creative Product Design, Asia University, Taichung, 41354, Taiwan
| | - Ben-Yi Liau
- Department of Biomedical Engineering, Hungkuang University, Taichung, 433304, Taiwan
| | - Joseph A Peters
- Rehabilitation Engineering Lab, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
| | - Li He
- College of Physical Education and Sports, Beijing Normal University, Beijing, 100875, China
| | - Runnell Townsend
- Rehabilitation Engineering Lab, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
| | - Yih-Kuen Jan
- Rehabilitation Engineering Lab, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA.
| |
Collapse
|
41
|
Effects of Muscle Fatigue and Recovery on Complexity of Surface Electromyography of Biceps Brachii. ENTROPY 2021; 23:e23081036. [PMID: 34441176 PMCID: PMC8391607 DOI: 10.3390/e23081036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/21/2022]
Abstract
This study aimed to investigate the degree of regularity of surface electromyography (sEMG) signals during muscle fatigue during dynamic contractions and muscle recovery after cupping therapy. To the best of our knowledge, this is the first study assessing both muscle fatigue and muscle recovery using a nonlinear method. Twelve healthy participants were recruited to perform biceps curls at 75% of the 10 repetitions maximum under four conditions: immediately and 24 h after cupping therapy (-300 mmHg pressure), as well as after sham control (no negative pressure). Cupping therapy or sham control was assigned to each participant according to a pre-determined counter-balanced order and applied to the participant's biceps brachii for 5 min. The degree of regularity of the sEMG signal during the first, second, and last 10 repetitions (Reps) of biceps curls was quantified using a modified sample entropy (Ems) algorithm. When exercise was performed immediately or 24 h after sham control, Ems of the sEMG signal showed a significant decrease from the first to second 10 Reps; when exercise was performed immediately after cupping therapy, Ems also showed a significant decrease from the first to second 10 Reps but its relative change was significantly smaller compared to the condition of exercise immediately after sham control. When exercise was performed 24 h after cupping therapy, Ems did not show a significant decrease, while its relative change was significantly smaller compared to the condition of exercise 24 h after sham control. These results indicated that the degree of regularity of sEMG signals quantified by Ems is capable of assessing muscle fatigue and the effect of cupping therapy. Moreover, this measure seems to be more sensitive to muscle fatigue and could yield more consistent results compared to the traditional linear measures.
Collapse
|
42
|
Understanding the effect of window length and overlap for assessing sEMG in dynamic fatiguing contractions: A non-linear dimensionality reduction and clustering. J Biomech 2021; 125:110598. [PMID: 34246910 DOI: 10.1016/j.jbiomech.2021.110598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 04/16/2021] [Accepted: 06/24/2021] [Indexed: 11/20/2022]
Abstract
The Short-Time Fourier transform (STFT) is a helpful tool to identify muscle fatigue with clinical and sports applications. However, the choice of STFT parameters may affect the estimation of myoelectrical manifestations of fatigue. Here, we determine the effect of window length and overlap selections on the frequency slope and the coefficient of variation from EMG spectrum features in fatiguing contractions. We also determine whether STFT parameters affect the relationship between frequency slopes and task failure. Eighty-eight healthy adult men performed one-leg heel-rise until exhaustion. A factorial design with a window length of 50, 100, 250, 500, and 1000 ms with 0, 25, 50, 75, and 90% of overlap was used. The frequency slope was non-linearly fitted as a task failure function, followed by a dimensionality reduction and clustering analysis. The STFT parameters elicited five patterns. A small window length produced a higher slope frequency for the peak frequency (p < 0.001). The contrary was found for the mean and median frequency (p < 0.001). A larger window length elicited a higher slope frequency for the mean and peak frequencies. The largest frequency slope and dispersion was found for a window length of 50 ms without overlap using peak frequency. A combination of 250 ms with 50% of overlap reduced the dispersion both for peak, median, and mean frequency, but decreased the slope frequency. Therefore, the selection of STFT parameters during dynamic contractions should be accompanied by a mechanical measure of the task failure, and its parameters should be adjusted according to the experiment's requirements.
Collapse
|
43
|
Beretta-Piccoli M, Negro M, Calanni L, Berardinelli A, Siciliano G, Tupler R, Soldini E, Cescon C, D’Antona G. Muscle Fiber Conduction Velocity Correlates With the Age at Onset in Mild FSHD Cases. Front Physiol 2021; 12:686176. [PMID: 34220550 PMCID: PMC8247588 DOI: 10.3389/fphys.2021.686176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/14/2021] [Indexed: 11/25/2022] Open
Abstract
A majority of patients with facioscapulohumeral muscular dystrophy (FSHD) report severe fatigue. The aim of this study was to explore whether fatigability during a performance task is related to the main clinical features of the disease in mildly affected patients. A total of 19 individuals with a molecular genetic-based diagnosis of FSHD (median D4Z4 deletion length of 27 kb) performed two isometric flexions of the dominant biceps brachii at 20% of their maximal voluntary contraction (MVC) for 2 min, and then at 60% MVC until exhaustion. Fatigability indices (average rectified value, mean frequency, conduction velocity, and fractal dimension) were extracted from the surface electromyogram (sEMG) signal, and their correlations with age, age at onset, disease duration, D4Z4 contraction length, perceived fatigability, and clinical disability score were analyzed. The conduction velocity during the low level contraction showed a significant negative correlation with the age at onset (p < 0.05). This finding suggest the assessment of conduction velocity at low isometric contraction intensities, as a potential useful tool to highlight differences in muscle involvement in FSHD patients.
Collapse
Affiliation(s)
- Matteo Beretta-Piccoli
- Criams-Sport Medicine Centre Voghera, University of Pavia, Pavia, Italy
- Rehabilitation Research Laboratory 2rLab, Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Massimo Negro
- Criams-Sport Medicine Centre Voghera, University of Pavia, Pavia, Italy
| | - Luca Calanni
- Criams-Sport Medicine Centre Voghera, University of Pavia, Pavia, Italy
| | | | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rossella Tupler
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Emiliano Soldini
- Research Methodology Competence Centre, Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Corrado Cescon
- Rehabilitation Research Laboratory 2rLab, Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Giuseppe D’Antona
- Criams-Sport Medicine Centre Voghera, University of Pavia, Pavia, Italy
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
44
|
Goubault E, Verdugo F, Pelletier J, Traube C, Begon M, Dal Maso F. Exhausting repetitive piano tasks lead to local forearm manifestation of muscle fatigue and negatively affect musical parameters. Sci Rep 2021; 11:8117. [PMID: 33854088 PMCID: PMC8047012 DOI: 10.1038/s41598-021-87403-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/23/2021] [Indexed: 02/02/2023] Open
Abstract
Muscle fatigue is considered as a risk factor for developing playing-related muscular disorders among professional pianists and could affect musical performance. This study investigated in 50 pianists the effect of fatiguing repetitive piano sequences on the development of forearm muscle fatigue and on piano performance parameters. Results showed signs of myoelectric manifestation of fatigue in the 42-electromyographic bipolar electrodes positioned on the forearm to record finger and wrist flexor and extensor muscles, through a significant non-constant decrease of instantaneous median frequency during two repetitive Digital (right-hand 16-tones sequence) and Chord (right-hand chords sequence) excerpts, with extensor muscles showing greater signs of fatigue than flexor muscles. In addition, muscle fatigue negatively affected key velocity, a central feature of piano sound intensity, in both Digital and Chord excerpts, and note-events, a fundamental aspect of musicians' performance parameter, in the Chord excerpt only. This result highlights that muscle fatigue may alter differently pianists' musical performance according to the characteristics of the piece played.
Collapse
Affiliation(s)
- Etienne Goubault
- grid.14848.310000 0001 2292 3357Laboratoire de Simulation et Modélisation du Mouvement, École de Kinésiologie et des Sciences de l’activité Physique, Université de Montréal, 1700 Rue Jacques-Tétreault, Laval, QC Canada
| | - Felipe Verdugo
- grid.14709.3b0000 0004 1936 8649Input Devices and Music Interaction Laboratory, Centre for Interdisciplinary Research in Music Media and Technology, Schulich School of Music, McGill University, Montreal, QC Canada ,grid.267180.a0000 0001 2168 0285EXPRESSION Team, Université Bretagne-Sud, Vannes, France
| | - Justine Pelletier
- grid.38678.320000 0001 2181 0211Laboratoire Arts vivants et interdisciplinarité, Département de danse, Université du Québec à Montréal, Montreal, QC Canada
| | - Caroline Traube
- grid.14848.310000 0001 2292 3357Laboratoire de recherche sur le geste musicien, Faculté de musique, Université de Montréal, Montreal, QC Canada
| | - Mickaël Begon
- grid.14848.310000 0001 2292 3357Laboratoire de Simulation et Modélisation du Mouvement, École de Kinésiologie et des Sciences de l’activité Physique, Université de Montréal, 1700 Rue Jacques-Tétreault, Laval, QC Canada ,grid.411418.90000 0001 2173 6322Sainte-Justine Hospital Research Center, Montreal, QC Canada
| | - Fabien Dal Maso
- grid.14848.310000 0001 2292 3357Laboratoire de Simulation et Modélisation du Mouvement, École de Kinésiologie et des Sciences de l’activité Physique, Université de Montréal, 1700 Rue Jacques-Tétreault, Laval, QC Canada ,Centre interdisciplinaire de recherche sur le cerveau et l’apprentissage, Montréal, QC Canada
| |
Collapse
|
45
|
R. R, K. R, S.J. T. Deep learning and machine learning techniques to improve hand movement classification in myoelectric control system. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Bajelani K, Arshi AR, Akhavan AN. Quantification of the effect of compression garments on fatigue behavior in cycling. Comput Methods Biomech Biomed Engin 2021; 24:1638-1645. [PMID: 33787406 DOI: 10.1080/10255842.2021.1906234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Effectiveness of compression garments to enhance athletic performance is the subject of numerous qualitative studies. This study aims at quantification of the effect of compression garments using nonlinear dynamics approach. Kinematic data of fifteen healthy male athletes was obtained and the state space was reconstructed. The trajectory drifts caused by fatigue in the state space were quantified using local flow variation technique. The study illustrates that compression garments (CGs) decrease rate of fatigue development and the body exhibits a more restricted complexity (more predictable and smaller fluctuations) when CGs are worn.
Collapse
Affiliation(s)
- Kourosh Bajelani
- Biomechanics and Sports Engineering Groups, Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Ahmad R Arshi
- Biomechanics and Sports Engineering Groups, Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Amir N Akhavan
- Management, Science and Technology Department, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
47
|
Albaladejo-Belmonte M, Tarazona-Motes M, Nohales-Alfonso FJ, De-Arriba M, Alberola-Rubio J, Garcia-Casado J. Characterization of Pelvic Floor Activity in Healthy Subjects and with Chronic Pelvic Pain: Diagnostic Potential of Surface Electromyography. SENSORS 2021; 21:s21062225. [PMID: 33806717 PMCID: PMC8004809 DOI: 10.3390/s21062225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022]
Abstract
Chronic pelvic pain (CPP) is a highly disabling disorder in women usually associated with hypertonic dysfunction of the pelvic floor musculature (PFM). The literature on the subject is not conclusive about the diagnostic potential of surface electromyography (sEMG), which could be due to poor signal characterization. In this study, we characterized the PFM activity of three groups of 24 subjects each: CPP patients with deep dyspareunia associated with a myofascial syndrome (CPP group), healthy women over 35 and/or parous (>35/P group, i.e., CPP counterparts) and under 35 and nulliparous (<35&NP). sEMG signals of the right and left PFM were recorded during contractions and relaxations. The signals were characterized by their root mean square (RMS), median frequency (MDF), Dimitrov index (DI), sample entropy (SampEn), and cross-correlation (CC). The PFM activity showed a higher power (>RMS), a predominance of low-frequency components (<MDF, >DI), greater complexity (>SampEn) and lower synchronization on the same side (<CC) in CPP patients, with more significant differences in the >35/P group. The same trend in differences was found between healthy women (<35&NP vs. >35/P) associated with aging and parity. These results show that sEMG can reveal alterations in PFM electrophysiology and provide clinicians with objective information for CPP diagnosis.
Collapse
Affiliation(s)
- Monica Albaladejo-Belmonte
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022 Valencia, Spain; (M.A.-B.); (J.G.-C.)
| | - Marta Tarazona-Motes
- Servicio de Ginecología y Obstetricia, Hospital Politècnic i Universitari La Fe, 46026 Valencia, Spain; (M.T.-M.); (F.J.N.-A.); (M.D.-A.)
| | - Francisco J. Nohales-Alfonso
- Servicio de Ginecología y Obstetricia, Hospital Politècnic i Universitari La Fe, 46026 Valencia, Spain; (M.T.-M.); (F.J.N.-A.); (M.D.-A.)
| | - Maria De-Arriba
- Servicio de Ginecología y Obstetricia, Hospital Politècnic i Universitari La Fe, 46026 Valencia, Spain; (M.T.-M.); (F.J.N.-A.); (M.D.-A.)
| | - Jose Alberola-Rubio
- Unidad de Bioelectrónica, Procesamiento de señales y Algoritmia, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Correspondence:
| | - Javier Garcia-Casado
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022 Valencia, Spain; (M.A.-B.); (J.G.-C.)
| |
Collapse
|
48
|
Increased resistance towards fatigability in patients with facioscapulohumeral muscular dystrophy. Eur J Appl Physiol 2021; 121:1617-1629. [PMID: 33646424 PMCID: PMC8144151 DOI: 10.1007/s00421-021-04650-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/19/2021] [Indexed: 11/01/2022]
Abstract
PURPOSE In facioscapulohumeral muscular dystrophy (FSHD) fatigue is a major complaint. We aimed to investigate whether during isometric sustained elbow flexions, performance fatigability indexes differ in patients with FSHD with respect to healthy controls. METHODS Seventeen patients with FSHD and seventeen healthy controls performed two isometric flexions of the dominant biceps brachii at 20% of their maximal voluntary contraction (MVC) for 2 min and then at 60% MVC until exhaustion. Muscle weakness was characterized as a percentage of predicted values. Maximal voluntary strength, endurance time and performance fatigability indices (mean frequency of the power spectrum (MNF), muscle fiber conduction velocity (CV) and fractal dimension (FD)), extracted from the surface electromyogram signal (sEMG) were compared between the two groups. RESULTS In patients with FSHD, maximal voluntary strength was 68.7% of predicted value (p < 0.01). Compared to healthy controls, FSHD patients showed reduced MVC (p < 0.001; r = 0.62) and lower levels of performance fatigability, characterized by reduced rate of changes in MNF (p < 0.01; r = 0.56), CV (p < 0.05; 0.37) and FD (p < 0.001; r = 0.51) and increased endurance time (p < 0.001; r = 0.63), during the isometric contraction at 60% MVC. CONCLUSION A decreased reduction in the slopes of all the considered sEMG parameters during sustained isometric elbow flexions suggests that patients with FSHD experience lower levels of performance fatigability compared to healthy controls.
Collapse
|
49
|
Madden KE, Djurdjanovic D, Deshpande AD. Using a System-Based Monitoring Paradigm to Assess Fatigue during Submaximal Static Exercise of the Elbow Extensor Muscles. SENSORS (BASEL, SWITZERLAND) 2021; 21:1024. [PMID: 33546155 PMCID: PMC7913181 DOI: 10.3390/s21041024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/21/2022]
Abstract
Current methods for evaluating fatigue separately assess intramuscular changes in individual muscles from corresponding alterations in movement output. The purpose of this study is to investigate if a system-based monitoring paradigm, which quantifies how the dynamic relationship between the activity from multiple muscles and force changes over time, produces a viable metric for assessing fatigue. Improvements made to the paradigm to facilitate online fatigue assessment are also discussed. Eight participants performed a static elbow extension task until exhaustion, while surface electromyography (sEMG) and force data were recorded. A dynamic time-series model mapped instantaneous features extracted from sEMG signals of multiple synergistic muscles to extension force. A metric, called the Freshness Similarity Index (FSI), was calculated using statistical analysis of modeling errors to reveal time-dependent changes in the dynamic model indicative of performance degradation. The FSI revealed strong, significant within-individual associations with two well-accepted measures of fatigue, maximum voluntary contraction (MVC) force (rrm=-0.86) and ratings of perceived exertion (RPE) (rrm=0.87), substantiating the viability of a system-based monitoring paradigm for assessing fatigue. These findings provide the first direct and quantitative link between a system-based performance degradation metric and traditional measures of fatigue.
Collapse
Affiliation(s)
| | | | - Ashish D. Deshpande
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; (K.E.M.); (D.D.)
| |
Collapse
|
50
|
Beretta-Piccoli M, Cescon C, D’Antona G. Evaluation of performance fatigability through surface EMG in health and muscle disease: state of the art. ARAB JOURNAL OF BASIC AND APPLIED SCIENCES 2020. [DOI: 10.1080/25765299.2020.1862985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Matteo Beretta-Piccoli
- Criams-Sport Medicine Centre Voghera, University of Pavia, Pavia, Italy
- Rehabilitation Research Laboratory 2rLab, Department of Business Economics, Health and Social Care, University of Applied, Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Corrado Cescon
- Rehabilitation Research Laboratory 2rLab, Department of Business Economics, Health and Social Care, University of Applied, Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Giuseppe D’Antona
- Criams-Sport Medicine Centre Voghera, University of Pavia, Pavia, Italy
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|