1
|
Antonov DV, Donskoy IG, Gaidukova OS, Misyura SY, Morozov VS, Nyashina GS, Strizhak PA. Dissociation characteristics and anthropogenic emissions from the combustion of double gas hydrates. ENVIRONMENTAL RESEARCH 2022; 214:113990. [PMID: 35952746 DOI: 10.1016/j.envres.2022.113990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/14/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Gas hydrates are an alternative and environmentally friendly energy source increasingly in the focus of scientific attention. The physicochemical processes behind gas hydrate combustion are studied experimentally and numerically with a view to improving the combustion efficiency and reducing gas emissions. It is important to estimate the pollutant emission concentrations in the context of combustion conditions. The research deals with the dissociation and combustion behavior of double gas hydrates in a tubular muffle furnace. Gas hydrates of different composition are considered: methane, methane-ethane, methane-propane and methane-isopropanol. Double gas hydrates are characterized by more stable combustion compared to methane hydrate. It is also shown that the double gas hydrate dissociation rate increases by 15-30% with increasing temperature. Dissociation and combustion processes were also modeled as part of the research, accounting for phase transitions in a gas hydrate layer. According to the simulation results, the total dissociation rate of gas hydrate increases by 3 times with an about 2.5-times increase in the powder layer thickness. Our experiments also focused on the impact of furnace temperature and gas hydrate composition on concentrations of anthropogenic gas emissions. We have found that the presence of heavy hydrocarbons such as ethane, propane and isopropanol in double gas hydrates reduce unburned CH4 emissions by 60%. Also, an increase in the combustion efficiency of double gas hydrates, accompanied by a decrease in the concentrations of unburned CH4 and CO, affects the yield of CO2, which increased by 13-35%. When we increased the temperature in the furnace from 750 °C to 1050 °C, concentrations of nitrogen oxides and carbon dioxide increased by up to five times. Thus, the resulting correlations between the key parameters of these processes and a set of the main inputs illustrate the possibility to predict the optimal conditions for the combustion of gas hydrates.
Collapse
Affiliation(s)
- D V Antonov
- Heat Mass Transfer Laboratory, National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk, 634050, Russia
| | - I G Donskoy
- Melentiev Energy Systems Institute SB RAS, 130 Lermontov Street, Irkutsk, 664033, Russia
| | - O S Gaidukova
- Heat Mass Transfer Laboratory, National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk, 634050, Russia
| | - S Ya Misyura
- Heat Mass Transfer Laboratory, National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk, 634050, Russia; Kutateladze Institute of Thermophysics Siberian Branch, Russian Academy of Sciences, 1 Lavrentyev Avenue, Novosibirsk, 630090, Russia
| | - V S Morozov
- Kutateladze Institute of Thermophysics Siberian Branch, Russian Academy of Sciences, 1 Lavrentyev Avenue, Novosibirsk, 630090, Russia
| | - G S Nyashina
- Heat Mass Transfer Laboratory, National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk, 634050, Russia
| | - P A Strizhak
- Heat Mass Transfer Laboratory, National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk, 634050, Russia.
| |
Collapse
|
2
|
Modeling of a Double Gas Hydrate Particle Ignition. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper presents the numerical research findings for the conditions and characteristics of methane-propane hydrate particle ignition. The curves of the ignition delay times of a hydrate particle versus its size and ambient temperature were obtained. The effect of the rates of phase transformations (evaporation and dissociation) on the hydrate particle ignition behavior was analyzed. Following the mathematical modeling of the processes under study using different heating schemes of gas hydrates, the patterns of processes developing in a particle during the induction period were identified. It was established that the ignition behavior of methane, propane, and other gases was significantly different from that of other gases produced from hydrate decomposition. The established differences form the basis for predicting the characteristics of gas hydrate ignition at different power plants.
Collapse
|
3
|
Prospects of Using Gas Hydrates in Power Plants. ENERGIES 2022. [DOI: 10.3390/en15124188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
By adding water to fuels, several objectives are pursued, with the main ones being to stabilize combustion, minimize the anthropogenic gaseous emissions, homogenize and stabilize the fuel, as well as improve its fire and explosion safety. Water can be injected into the furnace as droplets or vapor and introduced as part of fuel samples. Water often serves as a coupling or carrier medium for the delivery of the main fuel components. In this paper, we compare the combustion behaviors of high-potential slurry fuels and gas hydrates. We also analyze the contribution of in slurries and gas hydrates to the combustion process. The values of relative combustion efficiency indicators are determined for gas hydrates and slurry fuels. The conditions are identified in which these fuels can be burned effectively in power plants. The research findings can be used to rationalize the alternative ways of using water resources, i.e., gas hydrate powder and promising composite fuel droplets. The results can also help predict the conditions for the shortest possible ignition delay, as well as effective combustion of gas hydrates as the most environmentally friendly new-generation alternative fuel.
Collapse
|
4
|
Dissociation of a powder layer of methane gas hydrate in a wide range of temperatures and heat fluxes. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2021.11.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Numerical Investigation into the Development Performance of Gas Hydrate by Depressurization Based on Heat Transfer and Entropy Generation Analyses. ENTROPY 2020; 22:e22111212. [PMID: 33286980 PMCID: PMC7712905 DOI: 10.3390/e22111212] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 11/17/2022]
Abstract
The purpose of this study is to analyze the dynamic properties of gas hydrate development from a large hydrate simulator through numerical simulation. A mathematical model of heat transfer and entropy production of methane hydrate dissociation by depressurization has been established, and the change behaviors of various heat flows and entropy generations have been evaluated. Simulation results show that most of the heat supplied from outside is assimilated by methane hydrate. The energy loss caused by the fluid production is insignificant in comparison to the heat assimilation of the hydrate reservoir. The entropy generation of gas hydrate can be considered as the entropy flow from the ambient environment to the hydrate particles, and it is favorable from the perspective of efficient hydrate exploitation. On the contrary, the undesirable entropy generations of water, gas and quartz sand are induced by the irreversible heat conduction and thermal convection under notable temperature gradient in the deposit. Although lower production pressure will lead to larger entropy production of the whole system, the irreversible energy loss is always extremely limited when compared with the amount of thermal energy utilized by methane hydrate. The production pressure should be set as low as possible for the purpose of enhancing exploitation efficiency, as the entropy production rate is not sensitive to the energy recovery rate under depressurization.
Collapse
|