1
|
Wang Y, Xia S, Lin X, Pan O, Chen J, Su S. Finite-time measurement-driven Otto cycle. Phys Rev E 2024; 110:L052102. [PMID: 39690646 DOI: 10.1103/physreve.110.l052102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/08/2024] [Indexed: 12/19/2024]
Abstract
A novel quantum Otto heat engine that operates within a finite-time framework by incorporating measurement procedures is proposed. Departing from conventional quantum Otto heat engines, our model replaces the heat absorption process from a high-temperature source with invasive measurement. Moreover, we consider finite-time thermodynamic manipulation in each step. Our model focuses on exploring the effects of the angles of the measurement basis on the Bloch sphere and the timings of time-dependent evolutions on thermodynamic properties, with a specific emphasis on the trade-off between the power output and the efficiency. Our findings demonstrate that by carefully selecting specific parameters, the efficiency and overall performance of this heat engine can be significantly enhanced.
Collapse
|
2
|
He J, Chen L, Ge Y, Shi S, Li F. Four-Objective Optimizations of a Single Resonance Energy Selective Electron Refrigerator. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1445. [PMID: 37420465 PMCID: PMC9601456 DOI: 10.3390/e24101445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 06/01/2023]
Abstract
According to the established model of a single resonance energy selective electron refrigerator with heat leakage in the previous literature, this paper performs multi-objective optimization with finite-time thermodynamic theory and NSGA-II algorithm. Cooling load (R¯), coefficient of performance (ε), ecological function (ECO¯), and figure of merit (χ¯) of the ESER are taken as objective functions. Energy boundary (E'/kB) and resonance width (ΔE/kB) are regarded as optimization variables and their optimal intervals are obtained. The optimal solutions of quadru-, tri-, bi-, and single-objective optimizations are obtained by selecting the minimum deviation indices with three approaches of TOPSIS, LINMAP, and Shannon Entropy; the smaller the value of deviation index, the better the result. The results show that values of E'/kB and ΔE/kB are closely related to the values of the four optimization objectives; selecting the appropriate values of the system can design the system for optimal performance. The deviation indices are 0.0812 with LINMAP and TOPSIS approaches for four-objective optimization (ECO¯-R¯-ε-χ¯), while the deviation indices are 0.1085, 0.8455, 0.1865, and 0.1780 for four single-objective optimizations of maximum ECO¯, R¯, ε, and χ¯, respectively. Compared with single-objective optimization, four-objective optimization can better take different optimization objectives into account by choosing appropriate decision-making approaches. The optimal values of E'/kB and ΔE/kB range mainly from 12 to 13, and 1.5 to 2.5, respectively, for the four-objective optimization.
Collapse
Affiliation(s)
- Jinhu He
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lingen Chen
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yanlin Ge
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shuangshuang Shi
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fang Li
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
3
|
Future Perspectives of Finite-Time Thermodynamics. ENTROPY 2022; 24:e24050690. [PMID: 35626573 PMCID: PMC9141533 DOI: 10.3390/e24050690] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 12/10/2022]
|
4
|
Abstract
Vuilleumier refrigerators are devices which provide cooling power by using heat from a source at a temperature above the ambient. This feature makes Vuilleumier refrigerators particularly useful in situations where waste heat is abundant but electrical energy is scarce even as auxiliary operating power. For an operation by heat only with no need of auxiliary power, the Vuilleumier refrigerators must be designed in such a way that the mechanical losses occurring during operation are compensated by power gained from pressure differences. Here, we study the optimal design of such a device with heat-only operation maximizing the cooling power.
Collapse
|
5
|
Optimized Cooling Power of a Vuilleumier Refrigerator with Limited Regeneration. ENERGIES 2021. [DOI: 10.3390/en14248376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vuilleumier refrigerators provide cooling power by utilizing a heat source at temperatures above the ambient. This is particularly helpful in situations where waste heat is available and other power sources are limited. Vuilleumier refrigerators come in different technical configurations; here we analyze the thermodynamic performance of a configuration utilizing two displacer pistons with integrated regenerators. More specifically, we optimize the cooling power by optimizing the piston movement for a range of operation speeds. The optimization is based on the AS motion class for cyclic dynamics and uses an endoreversible model for the refrigerator. Our focus is on the influence of the regeneration extent present, and we find performance gains of about 17% for high regeneration extent and of about 28% for lower regeneration extent.
Collapse
|
6
|
Cooling Cycle Optimization for a Vuilleumier Refrigerator. ENTROPY 2021; 23:e23121562. [PMID: 34945868 PMCID: PMC8700123 DOI: 10.3390/e23121562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 11/17/2022]
Abstract
Vuilleumier refrigerators are a special type of heat-driven cooling machines. Essentially, they operate by using heat from a hot bath to pump heat from a cold bath to an environment at intermediate temperatures. In addition, some external energy in the form of electricity can be used as an auxiliary driving mechanism. Such refrigerators are, for example, advantageous in situations where waste heat is available and cooling power is needed. Here, the question of how the performance of Vuilleumier refrigerators can be improved is addressed with a particular focus on the piston motion and thus the thermodynamic cycle of the refrigerator. In order to obtain a quantitative estimate of the possible cooling power gain, a special class of piston movements (the AS motion class explained below) is used, which was already used successfully in the context of Stirling engines. We find improvements of the cooling power of more than 15%.
Collapse
|
7
|
Abstract
We present a novel class of reduced-order regenerator models that is based on Endoreversible Thermodynamics. The models rest upon the idea of an internally reversible (perfect) regenerator, even though they are not limited to the reversible description. In these models, the temperatures of the working gas that alternately streams out on the regenerator’s hot and cold sides are defined as functions of the state of the regenerator matrix. The matrix is assumed to feature a linear spatial temperature distribution. Thus, the matrix has only two degrees of freedom that can, for example, be identified with its energy and entropy content. The dynamics of the regenerator is correspondingly expressed in terms of balance equations for energy and entropy. Internal irreversibilities of the regenerator can be accounted for by introducing source terms to the entropy balance equation. Compared to continuum or nodal regenerator models, the number of degrees of freedom and numerical effort are reduced considerably. As will be shown, instead of the obvious choice of variables energy and entropy, if convenient, a different pair of variables can be used to specify the state of the regenerator matrix and formulate the regenerator’s dynamics. In total, we will discuss three variants of this endoreversible regenerator model, which we will refer to as ES, EE, and EEn-regenerator models.
Collapse
|
8
|
Wang T, Ge Y, Chen L, Feng H, Yu J. Optimal Heat Exchanger Area Distribution and Low-Temperature Heat Sink Temperature for Power Optimization of an Endoreversible Space Carnot Cycle. ENTROPY 2021; 23:e23101285. [PMID: 34682008 PMCID: PMC8534701 DOI: 10.3390/e23101285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022]
Abstract
Using finite-time thermodynamics, a model of an endoreversible Carnot cycle for a space power plant is established in this paper. The expressions of the cycle power output and thermal efficiency are derived. Using numerical calculations and taking the cycle power output as the optimization objective, the surface area distributions of three heat exchangers are optimized, and the maximum power output is obtained when the total heat transfer area of the three heat exchangers of the whole plant is fixed. Furthermore, the double-maximum power output is obtained by optimizing the temperature of a low-temperature heat sink. Finally, the influences of fixed plant parameters on the maximum power output performance are analyzed. The results show that there is an optimal temperature of the low-temperature heat sink and a couple of optimal area distributions that allow one to obtain the double-maximum power output. The results obtained have some guidelines for the design and optimization of actual space power plants.
Collapse
Affiliation(s)
- Tan Wang
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (T.W.); (Y.G.); (H.F.); (J.Y.)
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yanlin Ge
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (T.W.); (Y.G.); (H.F.); (J.Y.)
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lingen Chen
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (T.W.); (Y.G.); (H.F.); (J.Y.)
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Correspondence:
| | - Huijun Feng
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (T.W.); (Y.G.); (H.F.); (J.Y.)
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jiuyang Yu
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (T.W.); (Y.G.); (H.F.); (J.Y.)
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
9
|
Performance Optimizations with Single-, Bi-, Tri-, and Quadru-Objective for Irreversible Atkinson Cycle with Nonlinear Variation of Working Fluid’s Specific Heat. ENERGIES 2021. [DOI: 10.3390/en14144175] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Considering nonlinear variation of working fluid’s specific heat with its temperature, finite-time thermodynamic theory is applied to analyze and optimize the characteristics of an irreversible Atkinson cycle. Through numerical calculations, performance relationships between cycle dimensionless power density versus compression ratio and dimensionless power density versus thermal efficiency are obtained, respectively. When the design parameters take certain specific values, the performance differences of reversible, endoreversible and irreversible Atkinson cycles are compared. The maximum specific volume ratio, maximum pressure ratio, and thermal efficiency under the conditions of the maximum power output and maximum power density are compared. Based on NSGA-II, the single-, bi-, tri-, and quadru-objective optimizations are performed when the compression ratio is used as the optimization variable, and the cycle dimensionless power output, thermal efficiency, dimensionless ecological function, and dimensionless power density are used as the optimization objectives. The deviation indexes are obtained based on LINMAP, TOPSIS, and Shannon entropy solutions under different combinations of optimization objectives. By comparing the deviation indexes of bi-, tri- and quadru-objective optimization and the deviation indexes of single-objective optimizations based on maximum power output, maximum thermal efficiency, maximum ecological function and maximum power density, it is found that the deviation indexes of multi-objective optimization are smaller, and the solution of multi-objective optimization is desirable. The comparison results show that when the LINMAP solution is optimized with the dimensionless power output, thermal efficiency, and dimensionless power density as the objective functions, the deviation index is 0.1247, and this optimization objective combination is the most ideal.
Collapse
|
10
|
Sands D. The Carnot Cycle, Reversibility and Entropy. ENTROPY 2021; 23:e23070810. [PMID: 34202081 PMCID: PMC8304770 DOI: 10.3390/e23070810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022]
Abstract
The Carnot cycle and the attendant notions of reversibility and entropy are examined. It is shown how the modern view of these concepts still corresponds to the ideas Clausius laid down in the nineteenth century. As such, they reflect the outmoded idea, current at the time, that heat is motion. It is shown how this view of heat led Clausius to develop the entropy of a body based on the work that could be performed in a reversible process rather than the work that is actually performed in an irreversible process. In consequence, Clausius built into entropy a conflict with energy conservation, which is concerned with actual changes in energy. In this paper, reversibility and irreversibility are investigated by means of a macroscopic formulation of internal mechanisms of damping based on rate equations for the distribution of energy within a gas. It is shown that work processes involving a step change in external pressure, however small, are intrinsically irreversible. However, under idealised conditions of zero damping the gas inside a piston expands and traces out a trajectory through the space of equilibrium states. Therefore, the entropy change due to heat flow from the reservoir matches the entropy change of the equilibrium states. This trajectory can be traced out in reverse as the piston reverses direction, but if the external conditions are adjusted appropriately, the gas can be made to trace out a Carnot cycle in P-V space. The cycle is dynamic as opposed to quasi-static as the piston has kinetic energy equal in difference to the work performed internally and externally.
Collapse
Affiliation(s)
- David Sands
- Department of Physics and Mathematics, University of Hull, Hull HU6 7RX, UK
| |
Collapse
|
11
|
Optimal Control for a Hydraulic Recuperation System Using Endoreversible Thermodynamics. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Energy savings in the traffic sector are of considerable importance for economic and environmental considerations. Recuperation of mechanical energy in commercial vehicles can contribute to this goal. One promising technology rests on hydraulic systems, in particular for trucks which use such system also for other purposes such as lifting cargo or operating a crane. In this work the potential for energy savings is analyzed for commercial vehicles with tipper bodies, as these already have a hydraulic onboard system. The recuperation system is modeled based on endoreversible thermodynamics, thus providing a framework in which realistic driving data can be incorporated. We further used dissipative engine setups for modeling both the hydraulic and combustion engine of the hybrid drive train in order to include realistic efficiency maps. As a result, reduction in fuel consumption of up to 26% as compared to a simple baseline recuperation strategy can be achieved with an optimized recuperation control.
Collapse
|
12
|
Performance Analysis and Optimization for Irreversible Combined Carnot Heat Engine Working with Ideal Quantum Gases. ENTROPY 2021; 23:e23050536. [PMID: 33925622 PMCID: PMC8145201 DOI: 10.3390/e23050536] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/07/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022]
Abstract
An irreversible combined Carnot cycle model using ideal quantum gases as a working medium was studied by using finite-time thermodynamics. The combined cycle consisted of two Carnot sub-cycles in a cascade mode. Considering thermal resistance, internal irreversibility, and heat leakage losses, the power output and thermal efficiency of the irreversible combined Carnot cycle were derived by utilizing the quantum gas state equation. The temperature effect of the working medium on power output and thermal efficiency is analyzed by numerical method, the optimal relationship between power output and thermal efficiency is solved by the Euler-Lagrange equation, and the effects of different working mediums on the optimal power and thermal efficiency performance are also focused. The results show that there is a set of working medium temperatures that makes the power output of the combined cycle be maximum. When there is no heat leakage loss in the combined cycle, all the characteristic curves of optimal power versus thermal efficiency are parabolic-like ones, and the internal irreversibility makes both power output and efficiency decrease. When there is heat leakage loss in the combined cycle, all the characteristic curves of optimal power versus thermal efficiency are loop-shaped ones, and the heat leakage loss only affects the thermal efficiency of the combined Carnot cycle. Comparing the power output of combined heat engines with four types of working mediums, the two-stage combined Carnot cycle using ideal Fermi-Bose gas as working medium obtains the highest power output.
Collapse
|
13
|
Costea M, Petrescu S, Feidt M, Dobre C, Borcila B. Optimization Modeling of Irreversible Carnot Engine from the Perspective of Combining Finite Speed and Finite Time Analysis. ENTROPY 2021; 23:e23050504. [PMID: 33922290 PMCID: PMC8146341 DOI: 10.3390/e23050504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 11/16/2022]
Abstract
An irreversible Carnot cycle engine operating as a closed system is modeled using the Direct Method and the First Law of Thermodynamics for processes with Finite Speed. Several models considering the effect on the engine performance of external and internal irreversibilities expressed as a function of the piston speed are presented. External irreversibilities are due to heat transfer at temperature gradient between the cycle and heat reservoirs, while internal ones are represented by pressure losses due to the finite speed of the piston and friction. Moreover, a method for optimizing the temperature of the cycle fluid with respect to the temperature of source and sink and the piston speed is provided. The optimization results predict distinct maximums for the thermal efficiency and power output, as well as different behavior of the entropy generation per cycle and per time. The results obtained in this optimization, which is based on piston speed, and the Curzon–Ahlborn optimization, which is based on time duration, are compared and are found to differ significantly. Correction have been proposed in order to include internal irreversibility in the externally irreversible Carnot cycle from Curzon–Ahlborn optimization, which would be equivalent to a unification attempt of the two optimization analyses.
Collapse
Affiliation(s)
- Monica Costea
- Department of Engineering Thermodynamics, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (S.P.); (C.D.); (B.B.)
- Correspondence: ; Tel.: +40-021-402-9339
| | - Stoian Petrescu
- Department of Engineering Thermodynamics, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (S.P.); (C.D.); (B.B.)
| | - Michel Feidt
- Laboratory of Energetics, Theoretical and Applied Mechanics (LEMTA), URA CNRS 7563, University of Lorraine, 54518 Vandoeuvre-lès-Nancy, France;
| | - Catalina Dobre
- Department of Engineering Thermodynamics, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (S.P.); (C.D.); (B.B.)
| | - Bogdan Borcila
- Department of Engineering Thermodynamics, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (S.P.); (C.D.); (B.B.)
| |
Collapse
|
14
|
Power and Thermal Efficiency Optimization of an Irreversible Steady-Flow Lenoir Cycle. ENTROPY 2021; 23:e23040425. [PMID: 33918144 PMCID: PMC8066634 DOI: 10.3390/e23040425] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022]
Abstract
Using finite time thermodynamic theory, an irreversible steady-flow Lenoir cycle model is established, and expressions of power output and thermal efficiency for the model are derived. Through numerical calculations, with the different fixed total heat conductances (UT) of two heat exchangers, the maximum powers (Pmax), the maximum thermal efficiencies (ηmax), and the corresponding optimal heat conductance distribution ratios (uLP(opt)) and (uLη(opt)) are obtained. The effects of the internal irreversibility are analyzed. The results show that, when the heat conductances of the hot- and cold-side heat exchangers are constants, the corresponding power output and thermal efficiency are constant values. When the heat source temperature ratio (τ) and the effectivenesses of the heat exchangers increase, the corresponding power output and thermal efficiency increase. When the heat conductance distributions are the optimal values, the characteristic relationships of P-uL and η-uL are parabolic-like ones. When UT is given, with the increase in
τ, the Pmax, ηmax, uLP(opt), and uLη(opt) increase. When τ is given, with the increase in UT, Pmax and ηmax increase, while uLP(opt) and uLη(opt) decrease.
Collapse
|
15
|
Qi C, Ding Z, Chen L, Ge Y, Feng H. Modeling and Performance Optimization of an Irreversible Two-Stage Combined Thermal Brownian Heat Engine. ENTROPY 2021; 23:e23040419. [PMID: 33807398 PMCID: PMC8065476 DOI: 10.3390/e23040419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 12/17/2022]
Abstract
Based on finite time thermodynamics, an irreversible combined thermal Brownian heat engine model is established in this paper. The model consists of two thermal Brownian heat engines which are operating in tandem with thermal contact with three heat reservoirs. The rates of heat transfer are finite between the heat engine and the reservoir. Considering the heat leakage and the losses caused by kinetic energy change of particles, the formulas of steady current, power output and efficiency are derived. The power output and efficiency of combined heat engine are smaller than that of single heat engine operating between reservoirs with same temperatures. When the potential filed is free from external load, the effects of asymmetry of the potential, barrier height and heat leakage on the performance of the combined heat engine are analyzed. When the potential field is free from external load, the effects of basic design parameters on the performance of the combined heat engine are analyzed. The optimal power and efficiency are obtained by optimizing the barrier heights of two heat engines. The optimal working regions are obtained. There is optimal temperature ratio which maximize the overall power output or efficiency. When the potential filed is subjected to external load, effect of external load is analyzed. The steady current decreases versus external load; the power output and efficiency are monotonically increasing versus external load.
Collapse
Affiliation(s)
- Congzheng Qi
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (C.Q.); (Y.G.); (H.F.)
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- College of Power Engineering, Naval University of Engineering, Wuhan 430033, China;
| | - Zemin Ding
- College of Power Engineering, Naval University of Engineering, Wuhan 430033, China;
| | - Lingen Chen
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (C.Q.); (Y.G.); (H.F.)
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Correspondence: or
| | - Yanlin Ge
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (C.Q.); (Y.G.); (H.F.)
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Huijun Feng
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (C.Q.); (Y.G.); (H.F.)
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
16
|
Four-Objective Optimizations for an Improved Irreversible Closed Modified Simple Brayton Cycle. ENTROPY 2021; 23:e23030282. [PMID: 33652671 PMCID: PMC7996966 DOI: 10.3390/e23030282] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/02/2022]
Abstract
An improved irreversible closed modified simple Brayton cycle model with one isothermal heating process is established in this paper by using finite time thermodynamics. The heat reservoirs are variable-temperature ones. The irreversible losses in the compressor, turbine, and heat exchangers are considered. Firstly, the cycle performance is optimized by taking four performance indicators, including the dimensionless power output, thermal efficiency, dimensionless power density, and dimensionless ecological function, as the optimization objectives. The impacts of the irreversible losses on the optimization results are analyzed. The results indicate that four objective functions increase as the compressor and turbine efficiencies increase. The influences of the latter efficiency on the cycle performances are more significant than those of the former efficiency. Then, the NSGA-II algorithm is applied for multi-objective optimization, and three different decision methods are used to select the optimal solution from the Pareto frontier. The results show that the dimensionless power density and dimensionless ecological function compromise dimensionless power output and thermal efficiency. The corresponding deviation index of the Shannon Entropy method is equal to the corresponding deviation index of the maximum ecological function.
Collapse
|
17
|
Kong R, Chen L, Xia S, Li P, Ge Y. Minimization of Entropy Generation Rate in Hydrogen Iodide Decomposition Reactor Heated by High-Temperature Helium. ENTROPY 2021; 23:e23010082. [PMID: 33429980 PMCID: PMC7828003 DOI: 10.3390/e23010082] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/03/2022]
Abstract
The thermochemical sulfur-iodine cycle is a potential method for hydrogen production, and the hydrogen iodide (HI) decomposition is the key step to determine the efficiency of hydrogen production in the cycle. To further reduce the irreversibility of various transmission processes in the HI decomposition reaction, a one-dimensional plug flow model of HI decomposition tubular reactor is established, and performance optimization with entropy generate rate minimization (EGRM) in the decomposition reaction system as an optimization goal based on finite-time thermodynamics is carried out. The reference reactor is heated counter-currently by high-temperature helium gas, the optimal reactor and the modified reactor are designed based on the reference reactor design parameters. With the EGRM as the optimization goal, the optimal control method is used to solve the optimal configuration of the reactor under the condition that both the reactant inlet state and hydrogen production rate are fixed, and the optimal value of total EGR in the reactor is reduced by 13.3% compared with the reference value. The reference reactor is improved on the basis of the total EGR in the optimal reactor, two modified reactors with increased length are designed under the condition of changing the helium inlet state. The total EGR of the two modified reactors are the same as that of the optimal reactor, which are realized by decreasing the helium inlet temperature and helium inlet flow rate, respectively. The results show that the EGR of heat transfer accounts for a large proportion, and the decrease of total EGR is mainly caused by reducing heat transfer irreversibility. The local total EGR of the optimal reactor distribution is more uniform, which approximately confirms the principle of equipartition of entropy production. The EGR distributions of the modified reactors are similar to that of the reference reactor, but the reactor length increases significantly, bringing a relatively large pressure drop. The research results have certain guiding significance to the optimum design of HI decomposition reactors.
Collapse
Affiliation(s)
- Rui Kong
- College of Power Engineering, Naval University of Engineering, Wuhan 430033, China; (R.K.); (S.X.); (P.L.)
| | - Lingen Chen
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China;
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Correspondence: ; Tel.: +86-27-83615046
| | - Shaojun Xia
- College of Power Engineering, Naval University of Engineering, Wuhan 430033, China; (R.K.); (S.X.); (P.L.)
| | - Penglei Li
- College of Power Engineering, Naval University of Engineering, Wuhan 430033, China; (R.K.); (S.X.); (P.L.)
| | - Yanlin Ge
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China;
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
18
|
Optimization, Stability, and Entropy in Endoreversible Heat Engines. ENTROPY 2020; 22:e22111323. [PMID: 33287088 PMCID: PMC7711472 DOI: 10.3390/e22111323] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 11/17/2022]
Abstract
The stability of endoreversible heat engines has been extensively studied in the literature. In this paper, an alternative dynamic equations system was obtained by using restitution forces that bring the system back to the stationary state. The departing point is the assumption that the system has a stationary fixed point, along with a Taylor expansion in the first order of the input/output heat fluxes, without further specifications regarding the properties of the working fluid or the heat device specifications. Specific cases of the Newton and the phenomenological heat transfer laws in a Carnot-like heat engine model were analyzed. It was shown that the evolution of the trajectories toward the stationary state have relevant consequences on the performance of the system. A major role was played by the symmetries/asymmetries of the conductance ratio σhc of the heat transfer law associated with the input/output heat exchanges. Accordingly, three main behaviors were observed: (1) For small σhc values, the thermodynamic trajectories evolved near the endoreversible limit, improving the efficiency and power output values with a decrease in entropy generation; (2) for large σhc values, the thermodynamic trajectories evolved either near the Pareto front or near the endoreversible limit, and in both cases, they improved the efficiency and power values with a decrease in entropy generation; (3) for the symmetric case (σhc=1), the trajectories evolved either with increasing entropy generation tending toward the Pareto front or with a decrease in entropy generation tending toward the endoreversible limit. Moreover, it was shown that the total entropy generation can define a time scale for both the operation cycle time and the relaxation characteristic time.
Collapse
|
19
|
Shi S, Ge Y, Chen L, Feng H. Four-Objective Optimization of Irreversible Atkinson Cycle Based on NSGA-II. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E1150. [PMID: 33286919 PMCID: PMC7597310 DOI: 10.3390/e22101150] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/10/2020] [Accepted: 10/10/2020] [Indexed: 11/23/2022]
Abstract
Variation trends of dimensionless power density (PD) with a compression ratio and thermal efficiency (TE) are discussed according to the irreversible Atkinson cycle (AC) model established in previous literature. Then, for the fixed cycle temperature ratio, the maximum specific volume ratios, the maximum pressure ratios, and the TEs corresponding to the maximum power output (PO) and the maximum PD are compared. Finally, multi-objective optimization (MOO) of cycle performance with dimensionless PO, TE, dimensionless PD, and dimensionless ecological function (EF) as the optimization objectives and compression ratio as the optimization variable are performed by applying the non-dominated sorting genetic algorithm-II (NSGA-II). The results show that there is an optimal compression ratio which will maximize the dimensionless PD. The relation curve of the dimensionless PD and compression ratio is a parabolic-like one, and the dimensionless PD and TE is a loop-shaped one. The AC engine has smaller size and higher TE under the maximum PD condition than those of under the maximum PO condition. With the increase of TE, the dimensionless PO will decrease, the dimensionless PD will increase, and the dimensionless EF will first increase and then decrease. There is no positive ideal point in Pareto frontier. The optimal solutions by using three decision-making methods are compared. This paper analyzes the performance of the PD of the AC with three losses, and performs MOO of dimensionless PO, TE, dimensionless PD, and dimensionless EF. The new conclusions obtained have theoretical guideline value for the optimal design of actual Atkinson heat engine.
Collapse
Affiliation(s)
- Shuangshuang Shi
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (S.S.); (Y.G.); (H.F.)
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yanlin Ge
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (S.S.); (Y.G.); (H.F.)
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lingen Chen
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (S.S.); (Y.G.); (H.F.)
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Huijun Feng
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (S.S.); (Y.G.); (H.F.)
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|