1
|
Wiersinga P, Sleavin A, Boom B, Masmeijer T, Flint S, Habtour E. Hybrid Compliant Musculoskeletal System for Fast Actuation in Robots. MICROMACHINES 2022; 13:1783. [PMID: 36296136 PMCID: PMC9611504 DOI: 10.3390/mi13101783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
A nature-inspired musculoskeletal system is designed and developed to examine the principle of nonlinear elastic energy storage-release for robotic applications. The musculoskeletal system architecture consists of elastically rigid segments and hyperelastic soft materials to emulate rigid-soft interactions in limbless vertebrates. The objectives are to (i) improve the energy efficiency of actuation beyond that of current pure soft actuators while (ii) producing a high range of motion similar to that of soft robots but with structural stability. This paper proposes a musculoskeletal design that takes advantage of structural segmentation to increase the system's degrees of freedom, which enhances the range of motion. Our findings show that rigid-soft interactions provide a remarkable increase in energy storage and release and, thus, an increase in the undulation speed. The energy efficiency achieved is approximately 68% for bending the musculoskeletal system from the straight configuration, compared to 2.5-30% efficiency in purely soft actuators. The hybrid compliance of the musculoskeletal system under investigation shows promise for alleviating the need for actuators at each joint in a robot.
Collapse
Affiliation(s)
- Pieter Wiersinga
- Faculty of Science and Engineering, University of Groningen, Postbus 72, 9700 AB Groningen, The Netherlands
| | - Aidan Sleavin
- Department of Aeronautics & Astronautics, The University of Washington, Seattle, WA 98195, USA
- The Illimited LAB, University of Washington, Guggenheim 211, Seattle, WA 98195, USA
| | - Bart Boom
- Department of Aeronautics & Astronautics, The University of Washington, Seattle, WA 98195, USA
- The Illimited LAB, University of Washington, Guggenheim 211, Seattle, WA 98195, USA
| | - Thijs Masmeijer
- Department of Aeronautics & Astronautics, The University of Washington, Seattle, WA 98195, USA
- The Illimited LAB, University of Washington, Guggenheim 211, Seattle, WA 98195, USA
| | - Spencer Flint
- Department of Aeronautics & Astronautics, The University of Washington, Seattle, WA 98195, USA
- The Illimited LAB, University of Washington, Guggenheim 211, Seattle, WA 98195, USA
| | - Ed Habtour
- Department of Aeronautics & Astronautics, The University of Washington, Seattle, WA 98195, USA
- The Illimited LAB, University of Washington, Guggenheim 211, Seattle, WA 98195, USA
| |
Collapse
|
2
|
Montoya A, Habtour E, Moreu F. Detecting hidden transient events in noisy nonlinear time-series. CHAOS (WOODBURY, N.Y.) 2022; 32:073131. [PMID: 35907744 DOI: 10.1063/5.0097973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
The information impulse function (IIF), running Variance, and local Hölder Exponent are three conceptually different time-series evaluation techniques. These techniques examine time-series for local changes in information content, statistical variation, and point-wise smoothness, respectively. Using simulated data emulating a randomly excited nonlinear dynamical system, this study interrogates the utility of each method to correctly differentiate a transient event from the background while simultaneously locating it in time. Computational experiments are designed and conducted to evaluate the efficacy of each technique by varying pulse size, time location, and noise level in time-series. Our findings reveal that, in most cases, the first instance of a transient event is more easily observed with the information-based approach of IIF than with the Variance and local Hölder Exponent methods. While our study highlights the unique strengths of each technique, the results suggest that very robust and reliable event detection for nonlinear systems producing noisy time-series data can be obtained by incorporating the IIF into the analysis.
Collapse
Affiliation(s)
- A Montoya
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - E Habtour
- Department of Aeronautics and Astronautics, University of Washington, Seattle, Washington 98195, USA
| | - F Moreu
- Department of Civil, Construction, and Environmental Engineering, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|