1
|
Pujar AA, Barua A, Dey PS, Singh D, Roy U, Jolly MK, Hatzikirou H. Microenvironmental entropy dynamics analysis reveals novel insights into Notch-Delta-Jagged decision-making mechanism. iScience 2024; 27:110569. [PMID: 39318535 PMCID: PMC11420447 DOI: 10.1016/j.isci.2024.110569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/31/2024] [Accepted: 07/19/2024] [Indexed: 09/26/2024] Open
Abstract
Notch-Delta-Jagged (NDJ) signaling among neighboring cells contributes crucially to spatiotemporal pattern formation and developmental decision-making. Despite numerous detailed mathematical models, their high-dimensionality parametric space limits analytical treatment, especially regarding local microenvironmental fluctuations. Using the low-dimensional dynamics of the recently postulated least microenvironmental uncertainty principle (LEUP) framework, we showcase how the LEUP formalism recapitulates a noisy NDJ spatial patterning. Our LEUP simulations show that local phenotypic entropy increases for lateral inhibition but decreases for lateral induction. This distinction allows us to identify a critical parameter that captures the transition from a Notch-Delta-driven lateral inhibition to a Notch-Jagged-driven lateral induction phenomenon and suggests random phenotypic patterning in the case of lack of dominance of either Notch-Delta or Notch-Jagged signaling. Our results enable an analytical treatment to map the high-dimensional dynamics of NDJ signaling on tissue-level patterning and can possibly be generalized to decode operating principles of collective cellular decision-making.
Collapse
Affiliation(s)
- Aditi Ajith Pujar
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
- Undergraduate Program, Indian Institute of Science, Bangalore 560012, India
| | - Arnab Barua
- Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Partha Sarathi Dey
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Divyoj Singh
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
- Undergraduate Program, Indian Institute of Science, Bangalore 560012, India
| | - Ushasi Roy
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Haralampos Hatzikirou
- Mathematics Department, Khalifa University, P.O. Box: 127788, Abu Dhabi, UAE
- Technische Univesität Dresden, Center for Information Services and High Performance Computing, Nöthnitzer Straße 46, P.O. Box: 01062, Dresden, Germany
| |
Collapse
|
2
|
Foo J, Basanta D, Rockne RC, Strelez C, Shah C, Ghaffarian K, Mumenthaler SM, Mitchell K, Lathia JD, Frankhouser D, Branciamore S, Kuo YH, Marcucci G, Vander Velde R, Marusyk A, Huang S, Hari K, Jolly MK, Hatzikirou H, Poels KE, Spilker ME, Shtylla B, Robertson-Tessi M, Anderson ARA. Roadmap on plasticity and epigenetics in cancer. Phys Biol 2022; 19:10.1088/1478-3975/ac4ee2. [PMID: 35078159 PMCID: PMC9190291 DOI: 10.1088/1478-3975/ac4ee2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
The role of plasticity and epigenetics in shaping cancer evolution and response to therapy has taken center stage with recent technological advances including single cell sequencing. This roadmap article is focused on state-of-the-art mathematical and experimental approaches to interrogate plasticity in cancer, and addresses the following themes and questions: is there a formal overarching framework that encompasses both non-genetic plasticity and mutation-driven somatic evolution? How do we measure and model the role of the microenvironment in influencing/controlling non-genetic plasticity? How can we experimentally study non-genetic plasticity? Which mathematical techniques are required or best suited? What are the clinical and practical applications and implications of these concepts?
Collapse
Affiliation(s)
- Jasmine Foo
- School of Mathematics, University of Minnesota, Twin Cities, MN 55455, United States of America
| | - David Basanta
- Integrated Mathematical Oncology Department, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States of America
| | - Russell C Rockne
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, City of Hope National Medical Center, Beckman Research Institute, Duarte, CA 91010, United States of America
| | - Carly Strelez
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA 90064, United States of America
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Curran Shah
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA 90064, United States of America
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, United States of America
| | - Kimya Ghaffarian
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA 90064, United States of America
| | - Shannon M Mumenthaler
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA 90064, United States of America
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, United States of America
| | - Kelly Mitchell
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Justin D Lathia
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States of America
- Case Comprehensive Cancer Center, Cleveland, OH 44106, United States of America
- Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - David Frankhouser
- Department of Population Sciences, City of Hope National Medical Center, Beckman Research Institute, Duarte, CA 91010, United States of America
| | - Sergio Branciamore
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, City of Hope National Medical Center, Beckman Research Institute, Duarte, CA 91010, United States of America
| | - Ya-Huei Kuo
- Department of Hematologic Malignancies Translational Science, City of Hope National Medical Center, Beckman Research Institute, Duarte, CA 91010, United States of America
| | - Guido Marcucci
- Department of Hematologic Malignancies Translational Science, City of Hope National Medical Center, Beckman Research Institute, Duarte, CA 91010, United States of America
| | - Robert Vander Velde
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL 33612, United States of America
- Department of Molecular Biology, University of South Florida Health, Tampa, FL 33612, United States of America
| | - Andriy Marusyk
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL 33612, United States of America
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA 98109, United States of America
| | - Kishore Hari
- Centre for BioSystems Science and Engineering, Indian Institute of Science, 560012 Bangalore, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, 560012 Bangalore, India
| | - Haralampos Hatzikirou
- Mathematics Department, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
- Centre for Information Services and High Performance Computing, TU Dresden, 01062, Dresden, Germany
| | - Kamrine E Poels
- Early Clinical Development, Pfizer Worldwide Research and Development and Medical, United States of America
| | - Mary E Spilker
- Medicine Design, Pfizer Worldwide Research and Development and Medical, United States of America
| | - Blerta Shtylla
- Early Clinical Development, Pfizer Worldwide Research and Development and Medical, United States of America
| | - Mark Robertson-Tessi
- Integrated Mathematical Oncology Department, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States of America
| | - Alexander R A Anderson
- Integrated Mathematical Oncology Department, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States of America
| |
Collapse
|