1
|
Ivanenko M, Smolik WT, Wanta D, Midura M, Wróblewski P, Hou X, Yan X. Image Reconstruction Using Supervised Learning in Wearable Electrical Impedance Tomography of the Thorax. SENSORS (BASEL, SWITZERLAND) 2023; 23:7774. [PMID: 37765831 PMCID: PMC10538128 DOI: 10.3390/s23187774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Electrical impedance tomography (EIT) is a non-invasive technique for visualizing the internal structure of a human body. Capacitively coupled electrical impedance tomography (CCEIT) is a new contactless EIT technique that can potentially be used as a wearable device. Recent studies have shown that a machine learning-based approach is very promising for EIT image reconstruction. Most of the studies concern models containing up to 22 electrodes and focus on using different artificial neural network models, from simple shallow networks to complex convolutional networks. However, the use of convolutional networks in image reconstruction with a higher number of electrodes requires further investigation. In this work, two different architectures of artificial networks were used for CCEIT image reconstruction: a fully connected deep neural network and a conditional generative adversarial network (cGAN). The training dataset was generated by the numerical simulation of a thorax phantom with healthy and illness-affected lungs. Three kinds of illnesses, pneumothorax, pleural effusion, and hydropneumothorax, were modeled using the electrical properties of the tissues. The thorax phantom included the heart, aorta, spine, and lungs. The sensor with 32 area electrodes was used in the numerical model. The ECTsim custom-designed toolbox for Matlab was used to solve the forward problem and measurement simulation. Two artificial neural networks were trained with supervision for image reconstruction. Reconstruction quality was compared between those networks and one-step algebraic reconstruction methods such as linear back projection and pseudoinverse with Tikhonov regularization. This evaluation was based on pixel-to-pixel metrics such as root-mean-square error, structural similarity index, 2D correlation coefficient, and peak signal-to-noise ratio. Additionally, the diagnostic value measured by the ROC AUC metric was used to assess the image quality. The results showed that obtaining information about regional lung function (regions affected by pneumothorax or pleural effusion) is possible using image reconstruction based on supervised learning and deep neural networks in EIT. The results obtained using cGAN are strongly better than those obtained using a fully connected network, especially in the case of noisy measurement data. However, diagnostic value estimation showed that even algebraic methods allow us to obtain satisfactory results.
Collapse
Affiliation(s)
- Mikhail Ivanenko
- Faculty of Electronics and Information Technology, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland; (M.I.); (D.W.); (M.M.); (P.W.)
| | - Waldemar T. Smolik
- Faculty of Electronics and Information Technology, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland; (M.I.); (D.W.); (M.M.); (P.W.)
| | - Damian Wanta
- Faculty of Electronics and Information Technology, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland; (M.I.); (D.W.); (M.M.); (P.W.)
| | - Mateusz Midura
- Faculty of Electronics and Information Technology, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland; (M.I.); (D.W.); (M.M.); (P.W.)
| | - Przemysław Wróblewski
- Faculty of Electronics and Information Technology, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland; (M.I.); (D.W.); (M.M.); (P.W.)
| | - Xiaohan Hou
- Faculty of Electrical and Control Engineering, Liaoning Technical University, No. 188 Longwan Street, Huludao 125105, China; (X.H.); (X.Y.)
| | - Xiaoheng Yan
- Faculty of Electrical and Control Engineering, Liaoning Technical University, No. 188 Longwan Street, Huludao 125105, China; (X.H.); (X.Y.)
| |
Collapse
|
2
|
Baran B, Kozłowski E, Majerek D, Rymarczyk T, Soleimani M, Wójcik D. Application of Machine Learning Algorithms to the Discretization Problem in Wearable Electrical Tomography Imaging for Bladder Tracking. SENSORS (BASEL, SWITZERLAND) 2023; 23:1553. [PMID: 36772593 PMCID: PMC9918926 DOI: 10.3390/s23031553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
The article presents the implementation of artificial intelligence algorithms for the problem of discretization in Electrical Impedance Tomography (EIT) adapted for urinary tract monitoring. The primary objective of discretization is to create a finite element mesh (FEM) classifier that will separate the inclusion elements from the background. In general, the classifier is designed to detect the area of elements belonging to an inclusion revealing the shape of that object. We show the adaptation of supervised learning methods such as logistic regression, decision trees, linear and quadratic discriminant analysis to the problem of tracking the urinary bladder using EIT. Our study focuses on developing and comparing various algorithms for discretization, which perfectly supplement methods for an inverse problem. The innovation of the presented solutions lies in the originally adapted algorithms for EIT allowing for the tracking of the bladder. We claim that a robust measurement solution with sensors and statistical methods can track the placement and shape change of the bladder, leading to effective information about the studied object. This article also shows the developed device, its functions and working principle. The development of such a device and accompanying information technology came about in response to particularly strong market demand for modern technical solutions for urinary tract rehabilitation.
Collapse
Affiliation(s)
- Bartłomiej Baran
- Research & Development Centre Netrix S.A., 20-704 Lublin, Poland
| | - Edward Kozłowski
- Faculty of Management, Lublin University of Technology, 20-618 Lublin, Poland
| | - Dariusz Majerek
- Faculty of Fundamentals of Technology, Lublin University of Technology, 20-618 Lublin, Poland
| | - Tomasz Rymarczyk
- Research & Development Centre Netrix S.A., 20-704 Lublin, Poland
- WSEI University, 20-209 Lublin, Poland
| | - Manuchehr Soleimani
- Department of Electronic and Electrical Engineering, University of Bath, Bath BA2 7AY, UK
| | - Dariusz Wójcik
- Research & Development Centre Netrix S.A., 20-704 Lublin, Poland
- WSEI University, 20-209 Lublin, Poland
| |
Collapse
|
3
|
Irshad MT, Nisar MA, Huang X, Hartz J, Flak O, Li F, Gouverneur P, Piet A, Oltmanns KM, Grzegorzek M. SenseHunger: Machine Learning Approach to Hunger Detection Using Wearable Sensors. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22207711. [PMID: 36298061 PMCID: PMC9609214 DOI: 10.3390/s22207711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 05/23/2023]
Abstract
The perception of hunger and satiety is of great importance to maintaining a healthy body weight and avoiding chronic diseases such as obesity, underweight, or deficiency syndromes due to malnutrition. There are a number of disease patterns, characterized by a chronic loss of this perception. To our best knowledge, hunger and satiety cannot be classified using non-invasive measurements. Aiming to develop an objective classification system, this paper presents a multimodal sensory system using associated signal processing and pattern recognition methods for hunger and satiety detection based on non-invasive monitoring. We used an Empatica E4 smartwatch, a RespiBan wearable device, and JINS MEME smart glasses to capture physiological signals from five healthy normal weight subjects inactively sitting on a chair in a state of hunger and satiety. After pre-processing the signals, we compared different feature extraction approaches, either based on manual feature engineering or deep feature learning. Comparative experiments were carried out to determine the most appropriate sensor channel, device, and classifier to reliably discriminate between hunger and satiety states. Our experiments showed that the most discriminative features come from three specific sensor modalities: Electrodermal Activity (EDA), infrared Thermopile (Tmp), and Blood Volume Pulse (BVP).
Collapse
Affiliation(s)
- Muhammad Tausif Irshad
- Institute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Department of IT, University of the Punjab, Katchery Road, Lahore 54000, Pakistan
| | - Muhammad Adeel Nisar
- Institute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Department of IT, University of the Punjab, Katchery Road, Lahore 54000, Pakistan
| | - Xinyu Huang
- Institute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Jana Hartz
- Institute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Olaf Flak
- Department of Management, Faculty of Law and Social Sciences, Jan Kochanowski University of Kielce, ul. Żeromskiego 5, 25-369 Kielce, Poland
| | - Frédéric Li
- Institute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Philip Gouverneur
- Institute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Artur Piet
- Institute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Kerstin M. Oltmanns
- Section of Psychoneurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Marcin Grzegorzek
- Institute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Department of Knowledge Engineering, University of Economics in Katowice, Bogucicka 3, 40-287 Katowice, Poland
| |
Collapse
|
4
|
Special Issue: Regularization Techniques for Machine Learning and Their Applications. ELECTRONICS 2022. [DOI: 10.3390/electronics11040521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Over the last decade, learning theory performed significant progress in the development of sophisticated algorithms and their theoretical foundations. The theory builds on concepts that exploit ideas and methodologies from mathematical areas such as optimization theory. Regularization is probably the key to address the challenging problem of overfitting, which usually occurs in high-dimensional learning. Its primary goal is to make the machine learning algorithm “learn” and not “memorize” by penalizing the algorithm to reduce its generalization error in order to avoid the risk of overfitting. As a result, the variance of the model is significantly reduced, without substantial increase in its bias and without losing any important properties in the data.
Collapse
|
5
|
Abstract
Diffuse optical tomography using deep learning is an emerging technology that has found impressive medical diagnostic applications. However, creating an optical imaging system that uses visible and near-infrared (NIR) light is not straightforward due to photon absorption and multi-scattering by tissues. The high distortion levels caused due to these effects make the image reconstruction incredibly challenging. To overcome these challenges, various techniques have been proposed in the past, with varying success. One of the most successful techniques is the application of deep learning algorithms in diffuse optical tomography. This article discusses the current state-of-the-art diffuse optical tomography systems and comprehensively reviews the deep learning algorithms used in image reconstruction. This article attempts to provide researchers with the necessary background and tools to implement deep learning methods to solve diffuse optical tomography.
Collapse
|
6
|
Light Field Image Quality Enhancement by a Lightweight Deformable Deep Learning Framework for Intelligent Transportation Systems. ELECTRONICS 2021. [DOI: 10.3390/electronics10101136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Light field (LF) imaging has multi-view properties that help to create many applications that include auto-refocusing, depth estimation and 3D reconstruction of images, which are required particularly for intelligent transportation systems (ITSs). However, cameras can present a limited angular resolution, becoming a bottleneck in vision applications. Thus, there is a challenge to incorporate angular data due to disparities in the LF images. In recent years, different machine learning algorithms have been applied to both image processing and ITS research areas for different purposes. In this work, a Lightweight Deformable Deep Learning Framework is implemented, in which the problem of disparity into LF images is treated. To this end, an angular alignment module and a soft activation function into the Convolutional Neural Network (CNN) are implemented. For performance assessment, the proposed solution is compared with recent state-of-the-art methods using different LF datasets, each one with specific characteristics. Experimental results demonstrated that the proposed solution achieved a better performance than the other methods. The image quality results obtained outperform state-of-the-art LF image reconstruction methods. Furthermore, our model presents a lower computational complexity, decreasing the execution time.
Collapse
|