1
|
Tang M, Song X, Wang C, Jiang L, Zhou Y, Wang Y, Zhu J, Wang Y, Gao J, He X, Xu H. Interfacial Polarization Strategy to Electroactive Poly(lactic acid) Nanofibers for Humidity-Resistant Respiratory Protection and Machine Learning-Assisted Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45078-45090. [PMID: 39155485 DOI: 10.1021/acsami.4c12653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The advancement of intelligent and biodegradable respiratory protection equipment is pivotal in the realm of human health engineering. Despite significant progress, achieving a balance between efficient filtration and intelligent monitoring remains a great challenge, especially under conditions of high relative humidity (RH) and high airflow rate (AR). Herein, we proposed an interfacial stereocomplexation (ISC) strategy to facilitate intensive interfacial polarization for poly(lactic acid) (PLA) nanofibrous membranes, which were customized for machine learning-assisted respiratory diagnosis. Theoretical principles underlying the facilitated formation of the electroactive phase and aligned PLA chains were quantitatively depicted in the ISC-PLA nanofibers, contributing to the increased dielectric constant and surface potential (as high as 2.2 and 5.1 kV, respectively). Benefiting from the respiration-driven triboelectric mechanisms, the ISC-PLA demonstrated a high PM0.3 filtration efficiency of over 99% with an ultralow pressure drop (75 Pa), even in challenging circumstances (95 ± 5% RH, AR of 85 L/min). Furthermore, we implemented the ISC-PLA with multifunction respiratory monitoring (response time of 0.56 s and recovery time of 0.25 s) and wireless transmission technology, yielding a high recognition rate of 83% for personal breath states. This innovation has practical implications for health management and theoretical advancements in respiratory protection equipment.
Collapse
Affiliation(s)
- Mengke Tang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Xinyi Song
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Cunmin Wang
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Liang Jiang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yuhong Zhou
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yuanchunzhi Wang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Jintuo Zhu
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Yanqing Wang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 272100, China
| | - Xinjian He
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Huan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| |
Collapse
|
2
|
Liang Y, Xu X, Zhao L, Lei C, Dai K, Zhuo R, Fan B, Cheng E, Hassan MA, Gao L, Mu X, Hu N, Zhang C. Advances of Strategies to Increase the Surface Charge Density of Triboelectric Nanogenerators: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308469. [PMID: 38032176 DOI: 10.1002/smll.202308469] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Indexed: 12/01/2023]
Abstract
Triboelectric nanogenerators (TENGs) have manifested a remarkable potential for harvesting environmental energy and have the prospects to be utilized for various uses, for instance, self-powered sensing devices, flexible wearables, and marine corrosion protection. However, the potential for further development of TENGs is restricted on account of their low output power that in turn is determined by their surface charge density. The current review majorly focuses on the selection and optimization of triboelectric materials. Subsequently, various methods capable of enhancing the surface charge density of TENGs, including environmental regulation, charge excitation, charge pumping, electrostatic breakdown, charge trapping, and liquid-solid structure are comprehensively reviewed. Lastly, the review is concluded by highlighting the existing challenges in enhancing the surface charge density of TENGs and exploring potential opportunities for future research endeavors in this area.
Collapse
Affiliation(s)
- Yu Liang
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Xinyu Xu
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
- Key Laboratory of Optoelectronic Technology & Systems Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, P. R. China
| | - Libin Zhao
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
- Key Laboratory of Advanced Intelligent Protective Equipment Technology, Ministry of Education, Tianjin, 300401, P. R. China
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Chenyang Lei
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Kejie Dai
- School of Electrical and Mechanical Engineering, Pingdingshan University, Pingdingshan, 467000, P. R. China
| | - Ran Zhuo
- Electric Power Research Institute, China Southern Power Grid Company Ltd., Guangzhou, 510080, P. R. China
| | - Beibei Fan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - E Cheng
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Mohsen A Hassan
- Industrial and Manufacturing Department, Faculty of Innovative Design Engineering, Egypt-Japan University for Science and Technology (E-JUST), New Borg Al-Arab City, 21934, Egypt
| | - Lingxiao Gao
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Xiaojing Mu
- Key Laboratory of Optoelectronic Technology & Systems Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, P. R. China
| | - Ning Hu
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
- State Key Laboratory of Reliability and Intelligence Electrical Equipment, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Chi Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| |
Collapse
|
3
|
Li M, Han X, Zhang C, Zhang Y, Guo D, Xie G. Self-Reinforced Piezoelectric Response of an Electroluminescent Film for the Dual-Channel Signal Monitoring of Damaged Areas. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3786-3794. [PMID: 38215212 DOI: 10.1021/acsami.3c15881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Organic piezoelectric nanogenerators (PENGs) show promise for monitoring damage in mechanical equipment. However, weak interfacial bonding between the reinforcing phase and the fluorinated material limits the feedback signal from the damaged area. In this study, we developed a PENG film capable of real-time identification of the damage location and extent. By incorporating core-shell barium titanate (BTO@PVDF-HFP) nanoparticles, we achieved enhanced piezoelectric characteristics, flexibility, and processability. The composite film exhibited an expanded output voltage range, reaching 41.8 V with an increase in frequency, load, and damage depth. Additionally, the film demonstrated self-powered electroluminescence (EL) during the wear process, thanks to its inherent ferroelectric properties and the presence of luminescent ZnS:Cu particles. Unlike conventional PENG electroluminescent devices, the PENG film exhibited luminescence at the damage location over a wide temperature range. Our findings offer a novel approach for realizing modular and miniaturized real-time damage mapping systems in the field of safety engineering.
Collapse
Affiliation(s)
- Mengyu Li
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Xin Han
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Chuanlin Zhang
- Superlubricity Engineering Research Center, Jihua Laboratory, Foshan 528000, China
| | - Yu Zhang
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Dan Guo
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Guoxin Xie
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Wang W, Zhang L, Wang H, Zhao Y, Cheng J, Meng J, Wang D, Liu Y. High-Output Single-Electrode Droplet Triboelectric Nanogenerator Based on Asymmetrical Distribution Electrostatic Induction Enhancement. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301568. [PMID: 37150866 DOI: 10.1002/smll.202301568] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/04/2023] [Indexed: 05/09/2023]
Abstract
Droplet-based triboelectric nanogenerators (D-TENGs) have recently gained much attention due to their great potential in harvesting energy. However, the output performance of conventional single-electrode droplet-based TENGs is limited owing to low induced electrification efficiency. The asymmetric distribution of electric fields on both sides of the electrode edge enhances the electrostatic induction process and improves the output performance of D-TENG. Herein, an induced electrification-enhanced droplet-based triboelectric nanogenerator (IED-TENG) is developed to effectively enhance the output performance by simultaneously optimizing the electrode structure and the dynamics of the water droplet. One droplet falling from a height of 30 cm results in a -70 V output voltage and -6 µA short-circuit current, which is 70 times and 20 times the full-inductive-electrode mode, respectively. The working principle and the relationship between electric signal and droplet dynamics are analyzed in detail. Moreover, the peak output voltage can reach -110 V, and the peak current can get -140 µA by using the power generation of multiple water droplets. The present protocol provides an easy and reproducibility strategy in energy harvesting and sensing areas.
Collapse
Affiliation(s)
- Wenqi Wang
- Institute of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
- Qingdao Center of Resource Chemistry and New Materials, Qingdao, 266100, China
| | - Liqiang Zhang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Hanchao Wang
- Qingdao Center of Resource Chemistry and New Materials, Qingdao, 266100, China
| | - Yongkang Zhao
- Qingdao Center of Resource Chemistry and New Materials, Qingdao, 266100, China
| | - Jiahui Cheng
- Qingdao Center of Resource Chemistry and New Materials, Qingdao, 266100, China
| | - Jie Meng
- Qingdao Center of Resource Chemistry and New Materials, Qingdao, 266100, China
| | - Daoai Wang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Ying Liu
- Institute of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
5
|
Abdul-Hussain G, Holderbaum W, Theodoridis T, Wei G. Modified Nonlinear Hysteresis Approach for a Tactile Sensor. SENSORS (BASEL, SWITZERLAND) 2023; 23:7293. [PMID: 37631829 PMCID: PMC10458598 DOI: 10.3390/s23167293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Soft tactile sensors based on piezoresistive materials have large-area sensing applications. However, their accuracy is often affected by hysteresis which poses a significant challenge during operation. This paper introduces a novel approach that employs a backpropagation (BP) neural network to address the hysteresis nonlinearity in conductive fiber-based tactile sensors. To assess the effectiveness of the proposed method, four sensor units were designed. These sensor units underwent force sequences to collect corresponding output resistance. A backpropagation network was trained using these sequences, thereby correcting the resistance values. The training process exhibited excellent convergence, effectively adjusting the network's parameters to minimize the error between predicted and actual resistance values. As a result, the trained BP network accurately predicted the output resistances. Several validation experiments were conducted to highlight the primary contribution of this research. The proposed method reduced the maximum hysteresis error from 24.2% of the sensor's full-scale output to 13.5%. This improvement established the approach as a promising solution for enhancing the accuracy of soft tactile sensors based on piezoresistive materials. By effectively mitigating hysteresis nonlinearity, the capabilities of soft tactile sensors in various applications can be enhanced. These sensors become more reliable and more efficient tools for the measurement and control of force, particularly in the fields of soft robotics and wearable technology. Consequently, their widespread applications extend to robotics, medical devices, consumer electronics, and gaming. Though the complete elimination of hysteresis in tactile sensors may not be feasible, the proposed method effectively modifies the hysteresis nonlinearity, leading to improved sensor output accuracy.
Collapse
Affiliation(s)
- Gasak Abdul-Hussain
- School of Science, Engineering and Environment, University of Salford, Salford M5 4WT, UK; (W.H.); (T.T.); (G.W.)
| | | | | | | |
Collapse
|