1
|
Opuni KFM, Ruß M, Geens R, Vocht LD, Wielendaele PV, Debuy C, Sterckx YGJ, Glocker MO. Mass spectrometry-complemented molecular modeling predicts the interaction interface for a camelid single-domain antibody targeting the Plasmodium falciparum circumsporozoite protein's C-terminal domain. Comput Struct Biotechnol J 2024; 23:3300-3314. [PMID: 39296809 PMCID: PMC11409006 DOI: 10.1016/j.csbj.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
Background Bioanalytical methods that enable rapid and high-detail characterization of binding specificities and strengths of protein complexes with low sample consumption are highly desired. The interaction between a camelid single domain antibody (sdAbCSP1) and its target antigen (PfCSP-Cext) was selected as a model system to provide proof-of-principle for the here described methodology. Research design and methods The structure of the sdAbCSP1 - PfCSP-Cext complex was modeled using AlphaFold2. The recombinantly expressed proteins, sdAbCSP1, PfCSP-Cext, and the sdAbCSP1 - PfCSP-Cext complex, were subjected to limited proteolysis and mass spectrometric peptide analysis. ITEM MS (Intact Transition Epitope Mapping Mass Spectrometry) and ITC (Isothermal Titration Calorimetry) were applied to determine stoichiometry and binding strength. Results The paratope of sdAbCSP1 mainly consists of its CDR3 (aa100-118). PfCSP-Cext's epitope is assembled from its α-helix (aa40-52) and opposing loop (aa83-90). PfCSP-Cext's GluC cleavage sites E46 and E58 were shielded by complex formation, confirming the predicted epitope. Likewise, sdAbCSP1's tryptic cleavage sites R105 and R108 were shielded by complex formation, confirming the predicted paratope. ITEM MS determined the 1:1 stoichiometry and the high complex binding strength, exemplified by the gas phase dissociation reaction enthalpy of 50.2 kJ/mol. The in-solution complex dissociation constant is 5 × 10-10 M. Conclusions Combining AlphaFold2 modeling with mass spectrometry/limited proteolysis generated a trustworthy model for the sdAbCSP1 - PfCSP-Cext complex interaction interface.
Collapse
Affiliation(s)
- Kwabena F M Opuni
- Department of Pharmaceutical Chemistry, School of Pharmacy, College of Health Science, University of Ghana, P.O. Box LG43, Legon, Ghana
| | - Manuela Ruß
- Proteome Center Rostock, University Medicine Rostock and University of Rostock, Schillingallee 69, 18057 Rostock, Germany
| | - Rob Geens
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical, and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Line De Vocht
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical, and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Pieter Van Wielendaele
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical, and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Christophe Debuy
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical, and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Yann G-J Sterckx
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical, and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Michael O Glocker
- Proteome Center Rostock, University Medicine Rostock and University of Rostock, Schillingallee 69, 18057 Rostock, Germany
| |
Collapse
|
2
|
Akid H, Chennen K, Frey G, Thompson J, Ben Ayed M, Lachiche N. Graph-based machine learning model for weight prediction in protein-protein networks. BMC Bioinformatics 2024; 25:349. [PMID: 39511478 PMCID: PMC11546293 DOI: 10.1186/s12859-024-05973-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024] Open
Abstract
Proteins interact with each other in complex ways to perform significant biological functions. These interactions, known as protein-protein interactions (PPIs), can be depicted as a graph where proteins are nodes and their interactions are edges. The development of high-throughput experimental technologies allows for the generation of numerous data which permits increasing the sophistication of PPI models. However, despite significant progress, current PPI networks remain incomplete. Discovering missing interactions through experimental techniques can be costly, time-consuming, and challenging. Therefore, computational approaches have emerged as valuable tools for predicting missing interactions. In PPI networks, a graph is usually used to model the interactions between proteins. An edge between two proteins indicates a known interaction, while the absence of an edge means the interaction is not known or missed. However, this binary representation overlooks the reliability of known interactions when predicting new ones. To address this challenge, we propose a novel approach for link prediction in weighted protein-protein networks, where interaction weights denote confidence scores. By leveraging data from the yeast Saccharomyces cerevisiae obtained from the STRING database, we introduce a new model that combines similarity-based algorithms and aggregated confidence score weights for accurate link prediction purposes. Our model significantly improves prediction accuracy, surpassing traditional approaches in terms of Mean Absolute Error, Mean Relative Absolute Error, and Root Mean Square Error. Our proposed approach holds the potential for improved accuracy in predicting PPIs, which is crucial for better understanding the underlying biological processes.
Collapse
Affiliation(s)
- Hajer Akid
- ICube, University of Strasbourg, 67412, Illkirch Cedex, France.
| | - Kirsley Chennen
- ICube, University of Strasbourg, 67412, Illkirch Cedex, France
| | - Gabriel Frey
- ICube, University of Strasbourg, 67412, Illkirch Cedex, France
| | - Julie Thompson
- ICube, University of Strasbourg, 67412, Illkirch Cedex, France
| | | | | |
Collapse
|