1
|
Abstract
An accurate understanding of formation and gas properties is crucial to the efficient development of shale gas resources. As one kind of unconventional energy, shale gas shows significant differences from conventional energy ones in terms of gas accumulation processes, pore structure characteristics, gas storage forms, physical parameters, and reservoir production modes. Traditional experimental techniques could not satisfy the need to capture the microscopic characteristics of pores and throats in shale plays. In this review, the uniqueness of shale gas reservoirs is elaborated from the perspective of: (1) geological and pore structural characteristics, (2) adsorption/desorption laws, and (3) differences in properties between the adsorbed gas and free gas. As to the first aspect, the mineral composition and organic geochemical characteristics of shale samples from the Longmaxi Formation, Sichuan Basin, China were measured and analyzed based on the experimental results. Principles of different methods to test pore size distribution in shale formations are introduced, after which the results of pore size distribution of samples from the Longmaxi shale are given. Based on the geological understanding of shale formations, three different types of shale gas and respective modeling methods are reviewed. Afterwards, the conventional adsorption models, Gibbs excess adsorption behaviors, and supercritical adsorption characteristics, as well as their applicability to engineering problems, are introduced. Finally, six methods of calculating virtual saturated vapor pressure, seven methods of giving adsorbed gas density, and 12 methods of calculating gas viscosity in different pressure and temperature conditions are collected and compared, with the recommended methods given after a comparison.
Collapse
|
2
|
Babaei M, Yun Seng MC. Integrating Adsorption and Diffusion in Nanopores Using Thermodynamics and Equations of State. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Masoud Babaei
- Department of Chemical Engineering and Analytical Science, The University of Manchester, M13 9PL Manchester, U.K
| | - Mark Chong Yun Seng
- Department of Chemical Engineering and Analytical Science, The University of Manchester, M13 9PL Manchester, U.K
| |
Collapse
|
3
|
Numerical Simulation of Shale Gas Multiscale Seepage Mechanism-Coupled Stress Sensitivity. J CHEM-NY 2019. [DOI: 10.1155/2019/7387234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The complexity of the gas transport mechanism in microfractures and nanopores is caused by the feature of multiscale and multiphysics. Figuring out the flow mechanism is of great significance for the efficient development of shale gas. In this paper, an apparent permeability model which covers continue, slip, transition, and molecular flow and geomechanical effect was presented. Additionally, a mathematical model comprising multiscale, geomechanics, and adsorption phenomenon was proposed to characterize gas flow in the shale reservoir. The aim of this paper is to investigate some important impacts in the process of gas transportation, which includes the shale stress sensitivity, adsorption phenomenon, and reservoir porosity. The results reveal that the performance of the multistage fractured horizontal well is strongly influenced by stress sensitivity coefficient. The cumulative gas production will decrease sharply when the shale gas reservoir stress sensitivity coefficient increases. In addition, the adsorption phenomenon has an influence on shale gas seepage and sorption capacity; however, the effect of adsorption is very weak in the early gas transport period, and the impact of later will increase. Moreover, shale porosity also greatly affects the shale gas transportation.
Collapse
|