1
|
Gui Z, Zeng Y, Xie T, Chen B, Wang J, Wen Y, Tan T, Zou T, Zhang F, Zhang J. Cavitation is the determining mechanism for the atomization of high-viscosity liquid. iScience 2024; 27:110071. [PMID: 38868199 PMCID: PMC11167525 DOI: 10.1016/j.isci.2024.110071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/13/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024] Open
Abstract
Piezoelectric atomization is becoming mainstream in the field of inhalation therapy due to its significant advantages. With the rapid development of high-viscosity gene therapy drugs, the demand for piezoelectric atomization devices is increasing. However, conventional piezoelectric atomizers with a single-dimensional energy supply are unable to provide the energy required to atomize high-viscosity liquids. To address this problem, our team has designed a flow tube internal cavitation atomizer (FTICA). This study focuses on dissecting the atomization mechanism of FTICA. In contrast to the widely supported capillary wave hypothesis, our study provides evidence in favor of the cavitation hypothesis, proving that cavitation is the key to atomizing high-viscosity liquids with FTICA. In order to prove that the cavitation is the key to atomizing in the structure of FTICA, the performance of atomization is experimented after changing the cavitation conditions by heating and stirring of the liquids.
Collapse
Affiliation(s)
- Zhenzhen Gui
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, 230 Wai Huan Xi Road, Guangzhou 510006, China
| | - Yaohua Zeng
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, 230 Wai Huan Xi Road, Guangzhou 510006, China
| | - Tang Xie
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, 230 Wai Huan Xi Road, Guangzhou 510006, China
| | - Bochuan Chen
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, 230 Wai Huan Xi Road, Guangzhou 510006, China
| | - Jialong Wang
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, 230 Wai Huan Xi Road, Guangzhou 510006, China
| | - Yuxin Wen
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, 230 Wai Huan Xi Road, Guangzhou 510006, China
| | - Tian Tan
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, 230 Wai Huan Xi Road, Guangzhou 510006, China
| | - Tao Zou
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, 230 Wai Huan Xi Road, Guangzhou 510006, China
- Guangdong-Hong Kong-Macao Key Laboratory of Multi-scale Information Fusion and Collaborative Optimization Control of Complex Manufacturing Process, Guangzhou 510006, China
| | - Fan Zhang
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, 230 Wai Huan Xi Road, Guangzhou 510006, China
| | - Jianhui Zhang
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, 230 Wai Huan Xi Road, Guangzhou 510006, China
| |
Collapse
|
2
|
Jin J, Wang L, Yu Z, Sun W, Yang Z, Chen X, Liu G. Study on cooperative removal of NOx in simulated flue gas by paired electrolysis. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Promoting Effect of H+ and Other Factors on NO Removal by Using Acidic NaClO2 Solution. ENERGIES 2019. [DOI: 10.3390/en12152966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this study, NaClO2 was selected as a denitration oxidant. In order to clarify the mechanism of NaClO2 as an oxidation agent for NO removal efficiency, the effects of H+ and other factors (NaClO2 concentration, temperature, and the other gas) on the NO removal efficiency were investigated. NaClO2 showed a promotional ability on NO removal, whose efficiency increased with the increase of NaClO2 concentration. One hundred percent removal efficiency of NO could be achieved when the NaClO2 concentration was 0.014 mol/L. Furthermore, raising the reaction temperature benefited the removal of NO. The lower the pH, the better the NO removal efficiency. The promoting effect of H+ on the NO removal was studied by the Nernst equation, ionic polarization, and the generation of ClO2. Under the optimal conditions, the best removal efficiency of NO was 100%. Based on the experimental results, the reaction mechanism was finally speculated.
Collapse
|