1
|
Salgado-Hernández E, Ortiz-Ceballos ÁI, Alvarado-Lassman A, Martínez-Hernández S, Rosas-Mendoza ES, Velázquez-Fernández JB, Dorantes-Acosta AE. Energy-saving pretreatments affect pelagic Sargassum composition and DNA metabarcoding reveals the microbial community involved in methane yield. PLoS One 2023; 18:e0289972. [PMID: 37590200 PMCID: PMC10434912 DOI: 10.1371/journal.pone.0289972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/29/2023] [Indexed: 08/19/2023] Open
Abstract
Sargassum spp. flood the Caribbean coastline, causing damage to the local economy and environment. Anaerobic digestion (AD) has been proposed as an attractive option for turning macroalgae into valuable resources. Sargassum spp. has a complex composition that affects the microbial composition involved in AD which generates a low methane yield. This study aimed to improve the methane yield of pelagic Sargassum, using different energy-saving pretreatments and identifying the microbial community associated with methane production. We applied different energy-saving pretreatments to algal biomass and assessed the methane yield using a biomethane potential (BMP) test. The microbial communities involved in the AD of the best- and worst-performing methanogenic systems were analyzed by high-throughput sequencing. The results showed that pretreatment modified the content of inorganic compounds, fibers, and the C:N ratio, which had a strong positive correlation with BMP. The water washing pretreatment resulted in the best methane yield, with an increase of 38%. DNA metabarcoding analysis revealed that the bacterial genera Marinilabiliaceae_uncultured, DMER64, Treponema, and Hydrogenispora, as well as the archaea genera Methanosarcina, RumEn_M2, Bathyarchaeia, and Methanomassiliicocus, dominated the microbial community with a high methane yield. This study is the first to demonstrate the microbial community structure involved in the AD of Sargassum spp. The pretreatments presented in this study can help overcome the limitations associated with methane yield.
Collapse
Affiliation(s)
- Enrique Salgado-Hernández
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Ángel Isauro Ortiz-Ceballos
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Alejandro Alvarado-Lassman
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/Instituto Tecnológico de Orizaba, Orizaba, Veracruz, Mexico
| | - Sergio Martínez-Hernández
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | | | | | - Ana Elena Dorantes-Acosta
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, Veracruz, Mexico
| |
Collapse
|
2
|
Mlambo V, Mnisi CM, Matshogo TB, Mhlongo G. Prospects of dietary seaweeds and their bioactive compounds in sustainable poultry production systems: A symphony of good things? FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.998042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Modern poultry production systems face numerous economic, environmental, and social sustainability challenges that threaten their viability and acceptability as a major source of animal protein. As scientists and producers scramble to find cost-effective and socially acceptable solutions to these challenges, the dietary use of marine macroalgae (seaweeds) could be an ingenious option. Indeed, the incredible array of nutritive and bioactive compounds present in these macroscopic marine organisms can be exploited as part of sustainable poultry production systems of the future. Incorporating seaweeds in poultry diets could enhance feed utilization efficiency, growth performance, bird health, meat stability and quality, and consumer and environmental health. Theoretically, these benefits are mediated through the putative antiviral, antibacterial, antifungal, antioxidant, anticarcinogenic, anti-inflammatory, anti-allergic, antithrombotic, neuroprotective, hypocholesterolemic, and hypoglycemic properties of seaweed bioactive compounds. Despite this huge potential, exploitation of seaweed for poultry production appears to be constrained by a variety of factors such as high fibre, phenolics, and ash content. In addition, conflicting findings are often reported when seaweeds or their extracts are used in poultry feeding trials. Therefore, the purpose of this review paper is to collate information on the production, phytochemical components, and nutritive value of different seaweed species. It provides an overview ofin vivoeffects of dietary seaweeds as measured by nutrient utilization efficiency, growth performance, and product quality and stability in poultry. The utility of dietary seaweeds in sustainable poultry production systems is explored, while gaps that require further research are highlighted. Finally, opportunities that exist for enhancing the utility of seaweeds as a vehicle for sustainable production of functional poultry products for better global food and nutrition security are presented.
Collapse
|
3
|
Caxiano IN, Mello PA, Alijó PHR, Teixeira LV, Cano RF, Maia JGSS, Bastos JBV, Pavão MSG. Continuous design and economic analysis of a Sargassum muticum biorefinery process. BIORESOURCE TECHNOLOGY 2022; 343:126152. [PMID: 34699961 DOI: 10.1016/j.biortech.2021.126152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
This work assesses scale effects in designing a biorefinery from Sargassum muticum seaweed by applying a detailed process modeling methodology. Two process conversion units were simulated: one considering anaerobic digestion steps for producing biogas and generating electricity (base project), and the other with residual seaweed solids sold as fertilizer (alternative project). A comprehensive economic analysis was performed to estimate the minimum selling price of the process's main product (fucoidan extract). Results indicated that capital expenditures are up to 12.7% times higher in the base project. Minimum selling prices of the fucoidan extract product demonstrate the biorefinery's economies of scale for both projects. Seaweed's low methane potential reduces the economic attractiveness of electricity generation from biogas in the base project. Conversely, organic fertilizer price was more influential in the alternative project. Nonetheless, risk analyses show similar results for both scenarios, mainly due to fucoidan extract selling price and CAPEX estimates uncertainties.
Collapse
Affiliation(s)
- Igor N Caxiano
- SENAI Innovation Institute for Biosynthetics and Fibers, Cidade Universitária - Ilha do Fundão, Rio de Janeiro/RJ 21941-857, Brazil
| | - Pedro A Mello
- SENAI CETIQT College, Rua Magalhães de Castro, 174, Riachuelo, Rio de Janeiro/RJ 20961-020, Brazil
| | - Pedro H R Alijó
- Department of Physical Chemistry, Institute of Chemistry, Rio de Janeiro State University (UERJ), Rio de Janeiro /RJ 20550-900, Brazil.
| | - Leonardo V Teixeira
- SENAI Innovation Institute for Biosynthetics and Fibers, Cidade Universitária - Ilha do Fundão, Rio de Janeiro/RJ 21941-857, Brazil; School of Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro/RJ 21941-901, Brazil
| | - Rodrigo F Cano
- SENAI Innovation Institute for Biosynthetics and Fibers, Cidade Universitária - Ilha do Fundão, Rio de Janeiro/RJ 21941-857, Brazil; Glycobiology Program, Institute of Medical Biochemistry (IBqM), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro/RJ 21941-902, Brazil
| | - Jeiveison G S S Maia
- SENAI Innovation Institute for Biosynthetics and Fibers, Cidade Universitária - Ilha do Fundão, Rio de Janeiro/RJ 21941-857, Brazil
| | - João B V Bastos
- SENAI Innovation Institute for Biosynthetics and Fibers, Cidade Universitária - Ilha do Fundão, Rio de Janeiro/RJ 21941-857, Brazil; School of Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro/RJ 21941-901, Brazil
| | - Mauro S G Pavão
- Glycobiology Program, Institute of Medical Biochemistry (IBqM), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro/RJ 21941-902, Brazil
| |
Collapse
|
4
|
Saldarriaga-Hernandez S, Melchor-Martínez EM, Carrillo-Nieves D, Parra-Saldívar R, Iqbal HMN. Seasonal characterization and quantification of biomolecules from sargassum collected from Mexican Caribbean coast - A preliminary study as a step forward to blue economy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113507. [PMID: 34388546 DOI: 10.1016/j.jenvman.2021.113507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 02/05/2023]
Abstract
Since 2014, Mexican Caribbean coasts have experienced an atypical massive arrival of pelagic Sargassum accumulated on the shores triggers economic losses, public health problems, and ecosystem damaging near the coastline. Mechanical harvesting has been implemented ending in landfills. Since Sargassum algae represent abundant biomass in tropical regions of the world, it has shown potential as a feedstock to supply bioprocesses focused on obtaining high-value compounds and bioproducts. Nevertheless, there is a lack of data on the biochemical composition of Sargassum biomass from Mexican Caribbean coasts to propose valorization pathways. This study conducted a biochemical and elemental characterization of Sargassum biomass and compared, through statistical analysis, the effect of the season (dry and wet), place of collection (from the beach and shallow water), and method of extraction (Microwave-Assisted Extraction and Enzyme Assisted Extraction) on biomass composition. The biomass composition, expressed in dry weight basis, revealed 5-7% moisture content, 24-31 % ash, 2.6-3.8 % lipids, 1.8-7.0 %, total carbohydrates, 3-11 % total proteins, 1.5-2.31 mgGAg-1 total phenolic compounds (TPC), 2.7-2.9 kcal g-1 calorific power, and metals such as As (30-146.3 ppm), Fe (16.5-45 ppm), P (197-472 ppm). The most influential factor on the compositional content of Sargassum biomass was the season of the year, followed by the extraction method and the place of collection of Sargassum. These results will elucidate information on the biotechnological potential of Sargassum biomass from the Mexican Caribbean, contributing to sustainability challenges of the region, minimizing waste, and making the most of resources.
Collapse
Affiliation(s)
| | | | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan C.P., 45138, Jalisco, Mexico
| | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
5
|
Stokvis L, van Krimpen M, Kwakkel R, Bikker P. Evaluation of the nutritional value of seaweed products for broiler chickens’ nutrition. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Zhu X, Healy L, Zhang Z, Maguire J, Sun DW, Tiwari BK. Novel postharvest processing strategies for value-added applications of marine algae. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4444-4455. [PMID: 33608900 DOI: 10.1002/jsfa.11166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/13/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Marine algae are regarded as a promising nutrients resource in future as they can be sustainably cultured without land and high investment. These macroalgae are now widely processed into food and beverages, fertilizers and animal feed. Furthermore, bioactive compounds such as polysaccharides and polyphenols in seaweeds have proven to have antibacterial, antiviral and antifungal properties that can be utilized in cosmeceuticals, nutraceuticals and pharmaceuticals. As a key procedure in seaweed production, the postharvest process not only requires more laboured and energy but also affect the quality of the final product significantly. This article reviewed all current postharvest processes and technologies of seaweed and addressed potential postharvest strategies for seaweed production. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xianglu Zhu
- Teagasc, Ashtown Food Research Centre, Dublin, Ireland
- Food Refrigeration and Computerized Food Technology (FRCFT), School of Biosystems and Food Engineering, University College Dublin, National University of Ireland, Dublin, Ireland
| | - Laura Healy
- Teagasc, Ashtown Food Research Centre, Dublin, Ireland
- Technological University Dublin, Dublin, Ireland
| | - Zhihang Zhang
- Teagasc, Ashtown Food Research Centre, Dublin, Ireland
| | | | - Da-Wen Sun
- Food Refrigeration and Computerized Food Technology (FRCFT), School of Biosystems and Food Engineering, University College Dublin, National University of Ireland, Dublin, Ireland
| | | |
Collapse
|
7
|
A Prospective Study of the Exploitation of Pelagic Sargassum spp. as a Solid Biofuel Energy Source. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238706] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study presents a prospective study for the potential exploitation of pelagic Sargassum spp. as a solid biofuel energy source. It was carried out in three stages. First we conducted a morphological, physical-chemical, and structural characterization using scanning electron microscopy (SEM), infrared spectroscopy (FTIR), and X-ray diffraction (DRX), respectively. Second we evaluated the material’s functional properties as a solid biofuel based on its calorific value and the quantification of polymeric components like hemicellulose, cellulose, and lignin, as well as thermogravimetric and differential analysis to study the kinetics of its pyrolysis and determine parameters like activation energy (Ea), reaction order (n), and the pre-exponential factor (Z). Third we analyzed the energetic potential considering the estimated volume of pelagic Sargassum spp. that was removed from beaches along the Mexican Caribbean coast in recent years. Results of the kinetic study indicate that Sargassum spp. has an enormous potential for use as a complement to other bioenergy sources. Other results show the high potential for exploiting these algae as an energy source due to the huge volumes that have inundated Caribbean, West African, and northern Brazil shorelines in recent years. As a solid biofuel, Sargassum spp. has a potential energy the order of 0.203 gigajoules (GJ)/m3. In the energy matrix of the residential sector in Mexico, its potential use as an energy source is comparable to the national consumption of firewood. The volume of beachcast Sargassum spp. that was removed from ~8 km of coastline around Puerto Morelos, Mexico in 2018–2019, could have generated over 40 terajoules/year of solid biofuel.
Collapse
|
8
|
Sargassum Inundations in Turks and Caicos: Methane Potential and Proximate, Ultimate, Lipid, Amino Acid, Metal and Metalloid Analyses. ENERGIES 2020. [DOI: 10.3390/en13061523] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Caribbean has been experiencing beach inundations of pelagic Sargassum, causing environmental, health and financial issues. This study showed variations in the composition and methane potential (MP) between the species of Sargassum. The MPs for S. natans VIII, S. natans I and S. fluitans (145, 66 and 113 mL CH4 g−1 Volatile Solids) were considerably below theoretical potentials, possibly due to the high levels of indigestible fibre and inhibitors. The mixed mats Sargassum composition was substantially different from the individual species, being higher in ash, calcium, iron, arsenic and phenolics. The mixed mats produced no methane, perhaps due to the high levels of phenolics. There was a strong correlation between MP and phenolic content. Heavy metals and metalloids were at levels that should not cause concern, except for arsenic (21–124 mg kg−1 dry weight). Further work on the speciation of arsenic in Sargassum is required to fully determine the risk to health and agriculture. Both protein and lipid levels were low. The ‘indispensable amino acid’ profile compares favourably with that recommended by the World Health Organisation. Lipids had a high proportion of Polyunsaturated Fatty Acids. The use of Sargassum for biogas production could be challenging, and further work is required.
Collapse
|
9
|
Abstract
Biofuels production is expected to be an intrinsic confluence to the renewable energy sector in the coming years under the European regulations for renewable energy. Key standpoints of the biofuels promotions are the reduction of national carbon emissions and rural deployment. Despite jubilant outlook of biofuels for sustainable development, research efforts still tend to link the biofuel industry and regional growth. The aim of this study is to explore and review the biofuels industry through a socio-political, techno-economic, legal and environmental (PESTLE) analysis approach, and discuss the interrelation between technological facets and sustainable deployment.
Collapse
|
10
|
Abstract
The potential of algal biomass as a source of liquid and gaseous biofuels has been the subject of considerable research over the past few decades, with researchers strongly agreeing that algae have the potential of becoming a viable aquatic energy crop with a higher energy potential compared to that from either terrestrial biomass or municipal solid waste. However, neither microalgae nor seaweed are currently cultivated solely for energy purposes due to the high costs of harvesting, concentrating and drying. Anaerobic digestion of algal biomass could theoretically reduce costs associated with drying wet biomass before processing, but practical yields of biogas from digestion of many algae are substantially below the theoretical maximum. New processing methods are needed to reduce costs and increase the net energy balance. This review examines the biochemical and structural properties of seaweeds and of microalgal biomass that has been produced as part of the treatment of wastewater, and discusses some of the significant hurdles and recent initiatives for producing biogas from their anaerobic digestion.
Collapse
|
11
|
Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions. ENERGIES 2019. [DOI: 10.3390/en12060979] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Italy is one of the leading nations in the biogas sector. Agricultural, landfill, sewage and manure substrates are converted into biogas using anaerobic digestion and, then, into electricity and heat by means of properly arranged internal combustion engines. In this study, after an overview of the European context, the authors present the Italian biogas sector status in terms of development trends and factors that favour/block biogas spread. Despite the fact that biogas is a renewable fuel and a consolidate technology, it is mandatory to examine its real costs, biogas composition and engine combustion products. For this purpose, in the present work, the authors selected six in-operation biogas plants fed by different substrates, investigate plants construction and operation costs and measure both biogas and engine emissions compositions. Biogas status analysis shows a high growth rate until the end of 2012 due to generous Government subsidies while, after supports reduction, a continuous depletion of biogas installations is observed. Alongside the development, established supports overlook also the plant size as well as the cost. In fact, the most widespread plant nameplate electric power is 1 MW while its construction cost ranges between 4.2–4.8 millions of Euros. Real on-site measurements show variable biogas composition while engine emissions are comparable with the natural gas ones.
Collapse
|
12
|
Evaluation of Biochemical Methane Potential and Kinetics on the Anaerobic Digestion of Vegetable Crop Residues. ENERGIES 2018. [DOI: 10.3390/en12010026] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is a lack of literature reporting the measurement and prediction of biochemical methane potential (BMP) of vegetable crop residues (VCRs) and similarly, the kinetic assessment on the anaerobic digestion process of VCR is rarely investigated. In this paper, the BMP tests of five different vegetable (snap bean, capsicum, cucumber, eggplant, and tomato) crop residues were conducted at feed to inoculum ratio (F/I) of 2.0 under mesophilic (36 ± 1 °C) conditions. A series of single-variable and multiple-variable regression models were built based on organic components (hemicellulose, cellulose, lignin, total fat, total sugar, and crude protein) for BMP prediction. Three kinetic models, including the first-order kinetic model, the Chen and Hashimoto model, and the modified Gompertz model, were used to simulate the methane yield results of VCR and obtain valuable model parameters simultaneously. As a result, the BMPs and volatile solids (VS) degradation degree of different VCRs were respectively in the range of 94.2–146.8 mL g−1 VS and 40.4–49.9%; the regression prediction models with variables lignin (R2 = 0.704, p = 0.076), variables crude protein and lignin (R2 = 0.976, p = 0.048), and variables total fat, hemicellulose, and lignin (R2 = 0.999, p = 0.027) showed the best performance on BMP prediction among the single-factor, two-factor, and three-factor models, respectively. In addition, compared to the other two kinetic models, the modified Gompertz model could be excellently fitted (R2 = 0.986–0.998) to the results of BMP experiment, verification deviations within 0.3%.
Collapse
|