1
|
Zhang W, Wu X, Peng X, Tian Y, Yuan H. Solution Processable Metal-Organic Frameworks: Synthesis Strategy and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412708. [PMID: 39470040 DOI: 10.1002/adma.202412708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/30/2024] [Indexed: 10/30/2024]
Abstract
Metal-organic frameworks (MOFs), constructed by inorganic secondary building units with organic linkers via reticular chemistry, inherently suffer from poor solution processability due to their insoluble nature, resulting from their extensive crystalline networks and structural rigidity. The ubiquitous occurrence of precipitation and agglomeration of MOFs upon formation poses a significant obstacle to the scale-up production of MOF-based monolith, aerogels, membranes, and electronic devices, thus restricting their practical applications in various scenarios. To address the previously mentioned challenge, significant strides have been achieved over the past decade in the development of various strategies aimed at preparing solution-processable MOF systems. In this review, the latest advance in the synthetic strategies for the construction of solution-processable MOFs, including direct dispersion in ionic liquids, surface modification, controllable calcination, and bottom-up synthesis, is comprehensively summarized. The respective advantages and disadvantages of each method are discussed. Additionally, the intriguing applications of solution-processable MOF systems in the fields of liquid adsorbent, molecular capture, sensing, and separation are systematically discussed. Finally, the challenges and opportunities about the continued advancement of solution-processable MOFs and their potential applications are outlooked.
Collapse
Affiliation(s)
- Wanglin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xuanhao Wu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoyan Peng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yefei Tian
- School of Materials Science and Engineering, Chang'an University, No. 75 Changan Middle Road, Xi'an, Shaanxi, 710064, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
2
|
Saif MS, Hasan M, Zafar A, Ahmed MM, Tariq T, Waqas M, Hussain R, Zafar A, Xue H, Shu X. Advancing Nanoscale Science: Synthesis and Bioprinting of Zeolitic Imidazole Framework-8 for Enhanced Anti-Infectious Therapeutic Efficacies. Biomedicines 2023; 11:2832. [PMID: 37893205 PMCID: PMC10604899 DOI: 10.3390/biomedicines11102832] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Bacterial infectious disorders are becoming a major health problem for public health. The zeolitic imidazole framework-8 with a novel Cordia myxa extract-based (CME@ZIF-8) nanocomposite showed variable functionality, high porosity, and bacteria-killing activity against Staphylococcus aureus, and Escherichia coli strains have been created by using a straightforward approach. The sizes of synthesized zeolitic imidazole framework-8 (ZIF-8) and CME@ZIF-8 were 11.38 nm and 12.44 nm, respectively. Prepared metal organic frameworks have been characterized by gas chromatography-mass spectroscopy, Fourier transform spectroscopy, UV-visible spectroscopy, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. An antibacterial potential comparison between CME@ZIF-8 and zeolitic imidazole framework-8 has shown that CME@ZIF-8 was 31.3%, 28.57%, 46%, and 47% more efficient than ZIF-8 against Staphylococcus aureus and 43.7%, 42.8%, 35.7%, and 70% more efficient against Escherichia coli, while it was 31.25%, 33.3%, 46%, and 46% more efficient than the commercially available ciprofloxacin drug against Staphylococcus aureus and 43.7%, 42.8%, 35.7%, and 70% more efficient against Escherichia coli, respectively, for 750, 500, 250, and 125 μg mL-1. Minimum inhibitory concentration values of CME@ZIF-8 for Escherichia coli and Staphylococcus aureus were 15.6 and 31.25 μg/mL respectively, while the value of zeolitic imidazole framework-8 alone was 62.5 μg/mL for both Escherichia coli and Staphylococcus aureus. The reactive oxygen species generated by CME@ZIF-8 destroys the bacterial cell and its organelles. Consequently, the CME@ZIF-8 nanocomposites have endless potential applications for treating infectious diseases.
Collapse
Affiliation(s)
- Muhammad Saqib Saif
- Faculty of Chemical and Biological Science, Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Murtaza Hasan
- Faculty of Chemical and Biological Science, Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ayesha Zafar
- School of Engineering, Royal Melbourne Institute of Technology (RMIT) University, 24 La Trobe Street, Melbourne, VIC 3001, Australia
| | - Muhammad Mahmood Ahmed
- Faculty of Chemical and Biological Science, Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tuba Tariq
- Faculty of Chemical and Biological Science, Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Waqas
- Faculty of Chemical and Biological Science, Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Riaz Hussain
- Faculty of Chemical and Biological Science, Department of Veterinary Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Amna Zafar
- Faculty of Chemical and Biological Science, Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Huang Xue
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xugang Shu
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
3
|
Peng X, Peng YL, Huo M, Zhao J, Ma Q, Liu B, Deng C, Yang M, Dong B, Sun C, Chen G. High Efficient Pre-combustion CO2 Capture by Using Porous Slurry formed with ZIF-8 and Isoparaffin C16. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Mahdavi H, Smith SJD, Mulet X, Hill MR. Practical considerations in the design and use of porous liquids. MATERIALS HORIZONS 2022; 9:1577-1601. [PMID: 35373794 DOI: 10.1039/d1mh01616d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The possibility of creating well-controlled empty space within liquids is conceptually intriguing, and from an application perspective, full of potential. Since the concept of porous liquids (PLs) arose several years ago, research efforts in this field have intensified. This review highlights the design, synthesis, and applicability of PLs through a thorough examination of the current state-of-the-art. Following a detailed examination of the fundamentals of PLs, we examine the different synthetic approaches proposed to date, discuss the nature of PLs, and their pathway from the laboratory to practical application. Finally, possible challenges and opportunities are outlined.
Collapse
Affiliation(s)
| | - Stefan J D Smith
- Department of Chemical Engineering, Monash University, Australia.
- CSIRO, Bag 10, Clayton South, VIC 3169, Australia.
| | - Xavier Mulet
- CSIRO, Bag 10, Clayton South, VIC 3169, Australia.
| | - Matthew R Hill
- Department of Chemical Engineering, Monash University, Australia.
- CSIRO, Bag 10, Clayton South, VIC 3169, Australia.
| |
Collapse
|
5
|
Sheng L, Chen Z, Wang X, Farooq AS. Transforming Porous Silica Nanoparticles into Porous Liquids with Different Canopy Structures for CO 2 Capture. ACS OMEGA 2022; 7:5687-5697. [PMID: 35224330 PMCID: PMC8867549 DOI: 10.1021/acsomega.1c05091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Porous liquids (PLs) have both liquid fluidity and solid porosity, thereby offering a variety of applications, such as gas sorption and separation, homogeneous catalysis, energy storage, and so forth. In this research, canopies with varying structures were utilized to modify porous silica nanoparticles to develop Type I PLs. According to experimental results, the molecular weight of canopies should be high enough to maintain the porous materials in the liquid state at room temperature. Characterization results revealed that PL_1_M2070 and PL_1_AC1815 displayed low viscosity and good fluidity. Both low temperature and high pressure positively influenced CO2 capacity. The cavity occupancy resulted in poorer sorption capacity of PLs with branched canopies in comparison with that with linear canopies. Furthermore, the sorption capacity of PL_1_M2070 was 90.5% of the original CO2 sorption capacity after 10 sorption/desorption cycles, indicating excellent recyclability.
Collapse
Affiliation(s)
- Lisha Sheng
- School
of Energy and Environment, Southeast University, Nanjing 210096, P. R. China
- Key
Laboratory of Energy Thermal Conversion and Control of Ministry of
Education, Nanjing 210096, P. R. China
| | - Zhenqian Chen
- School
of Energy and Environment, Southeast University, Nanjing 210096, P. R. China
- Key
Laboratory of Energy Thermal Conversion and Control of Ministry of
Education, Nanjing 210096, P. R. China
- Jiangsu
Province Key Laboratory of Solar Energy Science and Technology, Nanjing 210096, P. R. China
| | - Xin Wang
- School
of Energy and Environment, Southeast University, Nanjing 210096, P. R. China
- Key
Laboratory of Energy Thermal Conversion and Control of Ministry of
Education, Nanjing 210096, P. R. China
| | - Abdul Samad Farooq
- Institute
of Refrigeration and Cryogenics, Shanghai
Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
6
|
Sheng L, Lei J, Chen Z, Wang Y. Solvent-free porous liquids for CO2 capture based on silica nanoparticles with different core structures. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Ahanger AM, Kumar S, Arya A, Suryavanshi A, Kain D, Vandana. Synthesis and Encapsulation of Ajuga parviflora Extract with Zeolitic Imidazolate Framework-8 and Their Therapeutic Action against G + and G - Drug-Resistant Bacteria. ACS OMEGA 2022; 7:1671-1681. [PMID: 35071862 PMCID: PMC8772321 DOI: 10.1021/acsomega.1c03984] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/23/2021] [Indexed: 10/29/2023]
Abstract
Infectious diseases caused by bacteria have become a public health issue. Antibiotic therapy for infectious disorders, as well as antibiotic overuse, has resulted in antibiotic-resistant bacterial strains. Zeolitic imidazolate framework-8 (ZIF-8) possesses a wide surface area, high porosity, variable functionality, and potential drug carriers. We have established a clear method for making a nanoscale APE@ZIF-8 nanocomposite agent with outstanding antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and cephalosporin-carbapenem-resistant Escherichia coli (CCREC). We present a unique approach for encapsulating molecules ofAjuga parviflora extract (APE) with ZIF-8. APE@ZIF-8 has a positive charge. By electrostatic contact with the negatively charged bacterial surface of S. aureus and E. coli, APE@ZIF-8 NPs produce reactive oxygen species (ROS) that damage bacterial cell organelles. As a result, the APE@ZIF-8 nanocomposite offers limitless application potential in the treatment of infectious disorders caused by drug-resistant gram-positive and gram-negative bacteria.
Collapse
Affiliation(s)
- Ab Majeed Ahanger
- Medicinal
Plant Research Laboratory, Department of Botany, Ramjas College, University of Delhi, New Delhi 110007, India
| | - Suresh Kumar
- Medicinal
Plant Research Laboratory, Department of Botany, Ramjas College, University of Delhi, New Delhi 110007, India
| | - Atul Arya
- Medicinal
Plant Research Laboratory, Department of Botany, Ramjas College, University of Delhi, New Delhi 110007, India
| | - Amrita Suryavanshi
- Medicinal
Plant Research Laboratory, Department of Botany, Ramjas College, University of Delhi, New Delhi 110007, India
| | - Dolly Kain
- Medicinal
Plant Research Laboratory, Department of Botany, Ramjas College, University of Delhi, New Delhi 110007, India
| | - Vandana
- Medicinal
Plant Research Laboratory, Department of Botany, Ramjas College, University of Delhi, New Delhi 110007, India
- Department
of Chemistry, Dyal Singh College, University
of Delhi, New Delhi 110003, India
| |
Collapse
|
8
|
Nanoscale zeolitic imidazolate framework–8 encapsulates crude extract of Ajuga bracteosa wall ex. Benth and enhanced their antibacterial efficiency. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Chen W, Zou E, Zuo JY, Chen M, Yang M, Li H, Jia C, Liu B, Sun C, Deng C, Ma Q, Yang L, Chen G. Separation of Ethane from Natural Gas Using Porous ZIF-8/Water–Glycol Slurry. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01579] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wan Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Enbao Zou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | | | - Mengzijing Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Mingke Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Hai Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Chongzhi Jia
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Bei Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Changyu Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Chun Deng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Qinglan Ma
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Lanying Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Guangjin Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| |
Collapse
|
10
|
Costa Gomes M, Pison L, Červinka C, Padua A. Porous Ionic Liquids or Liquid Metal-Organic Frameworks? Angew Chem Int Ed Engl 2018; 57:11909-11912. [DOI: 10.1002/anie.201805495] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Margarida Costa Gomes
- Institut de Chimie de Clermont-Ferrand; CNRS and Université Clermont Auvergne; BP80026 63171 Aubiere Cedex France
| | - Laure Pison
- Institut de Chimie de Clermont-Ferrand; CNRS and Université Clermont Auvergne; BP80026 63171 Aubiere Cedex France
| | - Ctirad Červinka
- Institut de Chimie de Clermont-Ferrand; CNRS and Université Clermont Auvergne; BP80026 63171 Aubiere Cedex France
- Department of Physical Chemistry; University of Chemistry and Technology; Technická 5 16628 Praha 6 Czech Republic
| | - Agilio Padua
- Institut de Chimie de Clermont-Ferrand; CNRS and Université Clermont Auvergne; BP80026 63171 Aubiere Cedex France
| |
Collapse
|
11
|
Costa Gomes M, Pison L, Červinka C, Padua A. Porous Ionic Liquids or Liquid Metal-Organic Frameworks? Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805495] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Margarida Costa Gomes
- Institut de Chimie de Clermont-Ferrand; CNRS and Université Clermont Auvergne; BP80026 63171 Aubiere Cedex France
| | - Laure Pison
- Institut de Chimie de Clermont-Ferrand; CNRS and Université Clermont Auvergne; BP80026 63171 Aubiere Cedex France
| | - Ctirad Červinka
- Institut de Chimie de Clermont-Ferrand; CNRS and Université Clermont Auvergne; BP80026 63171 Aubiere Cedex France
- Department of Physical Chemistry; University of Chemistry and Technology; Technická 5 16628 Praha 6 Czech Republic
| | - Agilio Padua
- Institut de Chimie de Clermont-Ferrand; CNRS and Université Clermont Auvergne; BP80026 63171 Aubiere Cedex France
| |
Collapse
|