1
|
Chicaiza-Ortiz C, Zhang P, Zhang J, Zhang T, Yang Q, He Y. CO₂-enhanced methane production by integration of bamboo biochar during anaerobic co-digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 373:123603. [PMID: 39642842 DOI: 10.1016/j.jenvman.2024.123603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/13/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
This study investigates the enhancement of methane production in anaerobic co-digestion (AcoD) through the introduction of exogenous CO₂ and the application of bamboo biochar. Exogenous CO₂ boosts biogas yield by providing an additional carbon source, which requires optimized solubility and pH buffering to ensure effective methanation. Biochar serves as an electron shuttle and pH stabilizer, facilitating CO2 solubility and syntrophic interactions that enhance microbial stability. When combined, biochar and CO₂ (R2) achieved a significant synergistic effect, increasing specific methane production (SMP) by 42.56% compared to the control (R0). Independent additions of biochar (R1) and CO₂ (R3) also improved SMP, with increases of 35.50% and 28.01%, respectively. This enhancement is likely due to the elevated activity of homoacetogenic bacteria and hydrogenotrophic methanogens, with increased acsB gene expression 2.4-fold with biochar + CO₂ and 1.5-fold with CO₂ alone compared to the control. Additionally, biochar facilitated syntrophic metabolism mediated by Cytochrome-C, promoting electron transfer. The study also demonstrated that biochar and CO2 could enhance enzyme activity, including acetyl-CoA synthase, mhpF, and mhpE. Such improvements bolster AcoD efficiency and promote resource recycling within the circular economy framework.
Collapse
Affiliation(s)
- Cristhian Chicaiza-Ortiz
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 200240, China; Biomass to Resources Group, Universidad Regional Amazónica IKIAM, Tena, Napo, 150150, Ecuador.
| | - Pengshuai Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 200240, China; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore.
| | - Tengyu Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Qing Yang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Yiliang He
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Oliver C. Chicken metabolism, immobilization, and post-industrial production. SOCIAL STUDIES OF SCIENCE 2024:3063127241247022. [PMID: 38825893 DOI: 10.1177/03063127241247022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Chickens have become emblematic of the Anthropocene: They embody the age of acceleration, (post-) industrial value, and intensification in scientific and technological knowledge and practice. Contemporary chickens are the bearers of significant genetic and nutritional knowledge, experimented upon and 'tweaked' so much so that some have denied that contemporary commercial chickens are chickens at all. This article reconsiders chickens through a metabolic lens, and the notion of metabolism through chickens, arguing that attending to chickens opens up new conceptualizations of life and labour in the metabosphere. The article tells a metabolic history of chickens from ornament to enclosed monocrop, by way of the laboratory and nutritional experiments. Then, it looks at chicken metabolism in three conceptual modes: first, as a conduit for value, metabolizing and enhancing human life for the past century; second, through technological innovations extending the gut outside chickens' immobilized bodies; and third, through the planetary impacts of metabolic porosity in geological manifestations, toxic atmospheres, and viral overflow. Ultimately, this article shows how techno-scientific production of chickens has taken place in and created the metabosphere as a site of experimentation and exploitation.
Collapse
|
3
|
Khan AA, Khan SU, Kipperberg G, Javed T, Ali MAS, Ullah R, Luo J. Unlocking biogas potential: Spatial analysis, economic viability, and climate resilience in southern regions of Khyber Pakhtunkhwa, Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168810. [PMID: 38000756 DOI: 10.1016/j.scitotenv.2023.168810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/02/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
Across the world, the growing embrace of anaerobic digestion for deriving energy from biogas presents substantial economic and environmental benefits. This strategic approach carries particular significance for Pakistan, which is actively striving to meet its renewable energy objectives. The study focuses on a comprehensive examination of the spatial distribution of biogas potential originating from livestock farm manure in the southern areas of Khyber Pakhtunkhwa. This factor plays a pivotal role in ascertaining the best location and economic feasibility of a bioenergy facility. The study employs a spatial analysis algorithm to estimate biogas production. By integrating livestock data, manure production metrics, and collection statistics, the algorithm provides a high-resolution assessment at 1 km interval. The analysis unveil a biogas potential of 1.40 billion cubic meters of bio-methane sourced from manure. District D.I.Khan emerges as the leading producer, generating 201.40 million cubic meters of bio-methane. Several maps illustrate optimal sites and potential capacities for biogas facilities utilizing manure. The study proposes the practicality of establishing 868 biogas plants within the surveyed geographic region. Collectively, these plants would generate a substantial 909.34 Megawatt electrical (Mwe), while individual capacities spanning from 120 Kilowatt electrical (Kwe) to an impressive 997 KWe. These findings offer a clear path for strategically siting biogas plants, a crucial component of the global battle against climate change. Moreover, the findings of this study have played a significant role in shaping guidelines aimed at mitigating methane emissions, promoting the generation of renewable energy, and advocating for sustainable waste management practices. These guidelines serve as invaluable tools for climate mitigation and adaptation endeavors.
Collapse
Affiliation(s)
- Arshad Ahmad Khan
- College of Economics and Management, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China.
| | - Sufyan Ullah Khan
- Department of Economics and Finance, UiS Business School, University of Stavanger, 4036 Stavanger, Norway.
| | - Gorm Kipperberg
- Department of Economics and Finance, UiS Business School, University of Stavanger, 4036 Stavanger, Norway.
| | - Tehseen Javed
- Department of Environmental Sciences, Kohat University of Science and Technology, Kohat, Pakistan.
| | | | - Rahman Ullah
- Department of Journalism and Mass Communication, Kohat University of Science and Technology, Kohat, Pakistan.
| | - Jianchao Luo
- College of Economics and Management, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
4
|
Lemaigre S, Gerin PA, Adam G, Klimek D, Goux X, Herold M, Frkova Z, Calusinska M, Delfosse P. Potential of acetic acid to restore methane production in anaerobic reactors critically intoxicated by ammonia as evidenced by metabolic and microbial monitoring. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:188. [PMID: 38042839 PMCID: PMC10693713 DOI: 10.1186/s13068-023-02438-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND Biogas and biomethane production from the on-farm anaerobic digestion (AD) of animal manure and agri-food wastes could play a key role in transforming Europe's energy system by mitigating its dependence on fossil fuels and tackling the climate crisis. Although ammonia is essential for microbial growth, it inhibits the AD process if present in high concentrations, especially under its free form, thus leading to economic losses. In this study, which includes both metabolic and microbial monitoring, we tested a strategy to restore substrate conversion to methane in AD reactors facing critical free ammonia intoxication. RESULTS The AD process of three mesophilic semi-continuous 100L reactors critically intoxicated by free ammonia (> 3.5 g_N L-1; inhibited hydrolysis and heterotrophic acetogenesis; interrupted methanogenesis) was restored by applying a strategy that included reducing pH using acetic acid, washing out total ammonia with water, re-inoculation with active microbial flora and progressively re-introducing sugar beet pulp as a feed substrate. After 5 weeks, two reactors restarted to hydrolyse the pulp and produced CH4 from the methylotrophic methanogenesis pathway. The acetoclastic pathway remained inhibited due to the transient dominance of a strictly methylotrophic methanogen (Candidatus Methanoplasma genus) to the detriment of Methanosarcina. Concomitantly, the third reactor, in which Methanosarcina remained dominant, produced CH4 from the acetoclastic pathway but faced hydrolysis inhibition. After 11 weeks, the hydrolysis, the acetoclastic pathway and possibly the hydrogenotrophic pathway were functional in all reactors. The methylotrophic pathway was no longer favoured. Although syntrophic propionate oxidation remained suboptimal, the final pulp to CH4 conversion ratio (0.41 ± 0.10 LN_CH4 g_VS-1) was analogous to the pulp biochemical methane potential (0.38 ± 0.03 LN_CH4 g_VS-1). CONCLUSIONS Despite an extreme free ammonia intoxication, the proposed process recovery strategy allowed CH4 production to be restored in three intoxicated reactors within 8 weeks, a period during which re-inoculation appeared to be crucial to sustain the process. Introducing acetic acid allowed substantial CH4 production during the recovery period. Furthermore, the initial pH reduction promoted ammonium capture in the slurry, which could allow the field application of the effluents produced by full-scale digesters recovering from ammonia intoxication.
Collapse
Affiliation(s)
- Sébastien Lemaigre
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Rue du Brill 41, L-4422, Belvaux, Luxembourg.
| | - Patrick A Gerin
- Earth and Life Institute, Bioengineering, Université Catholique de Louvain, Croix du Sud 2, Box L7.05.19, B-1348, Louvain-la-Neuve, Belgium
| | - Gilles Adam
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Rue du Brill 41, L-4422, Belvaux, Luxembourg
| | - Dominika Klimek
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Rue du Brill 41, L-4422, Belvaux, Luxembourg
| | - Xavier Goux
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Rue du Brill 41, L-4422, Belvaux, Luxembourg
| | - Malte Herold
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Rue du Brill 41, L-4422, Belvaux, Luxembourg
| | - Zuzana Frkova
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Rue du Brill 41, L-4422, Belvaux, Luxembourg
| | - Magdalena Calusinska
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Rue du Brill 41, L-4422, Belvaux, Luxembourg
| | - Philippe Delfosse
- Université du Luxembourg, Campus Belval, Maison du Savoir, Avenue de l'Université 2, L-4365, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
5
|
Estimation of Acetic Acid Concentration from Biogas Samples Using Machine Learning. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1155/2023/2871769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
In a biogas plant, the acetic acid concentration is a major component of the substrate as it determines the pH value, and this pH value correlates with the volume of biogas produced. Since it requires specialized laboratory equipment, the concentration of acetic acid in a biogas substrate cannot be measured on-line. The project aims to use NIR sensors and machine learning algorithms to estimate the acetic acid concentration in a biogas substrate based on the measured intensities of the substrate. As a result of this project, it was possible to determine whether the acetic acid concentration in a biogas substrate is higher or lower than 2 g/l using machine learning models.
Collapse
|
6
|
Hammerschmiedt T, Kintl A, Holatko J, Mustafa A, Vitez T, Malicek O, Baltazar T, Elbl J, Brtnicky M. Assessment of digestates prepared from maize, legumes, and their mixed culture as soil amendments: Effects on plant biomass and soil properties. FRONTIERS IN PLANT SCIENCE 2022; 13:1017191. [PMID: 36582636 PMCID: PMC9793090 DOI: 10.3389/fpls.2022.1017191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Digestate prepared from anaerobic digestion can be used as a fertilizer, as it contains ample amounts of plant nutrients, mainly nitrogen, phosphorous, and potassium. In this regard, digestates produced from mixed intercropped cereal and legume biomass have the potential to enrich soil and plants with nutrients more efficiently than monoculture-based digestates. The objective of this study was to determine the impact of different types of digestates applied at a rate of 40 t·ha-1 of fresh matter on soil properties and crop yield in a pot experiment with lettuce (Lactuca sativa) as a test crop. Anaerobic digestion of silages was prepared from the following monocultures and mixed cultures: broad bean, maize, maize and broad bean, maize and white sweet clover, and white sweet clover. Anaerobic digestion was performed in an automatic custom-made system and applied to the soil. Results revealed that fresh and dry aboveground biomass as well as the amount of nitrogen in plants significantly increased in all digestate-amended variants in comparison to control. The highest content of soil total nitrogen (+11% compared to the control) and urease (+3% compared to control) were observed for maize digestate amendment. Broad bean digestate mediated the highest oxidizable carbon (+48%), basal respiration (+46%), and N-acetyl-β-D-glucosamine-, L-alanine-, and L-lysine-induced respiration (+22%, +35%, +22%) compared to control. Moreover, maize and broad bean digestate resulted in the highest values of N-acetyl-β-D-glucosaminidase and β -glucosidase (+35% and +39%), and maize and white sweet clover digestate revealed the highest value of arylsulfatase (+32%). The observed differences in results suggest different effects of applied digestates. We thus concluded that legume-containing digestates possibly stimulate microbial activity (as found in increased respiration rates), and might lead to increased nitrogen losses if the more quickly mineralized nitrogen is not taken up by the plants.
Collapse
Affiliation(s)
- Tereza Hammerschmiedt
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Antonín Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Agricultural Research, Ltd., Troubsko, Czechia
| | - Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Agrovyzkum Rapotin, Ltd., Rapotin, Czechia
| | - Adnan Mustafa
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Praha, Czechia
| | - Tomas Vitez
- Department of Agricultural, Food and Environmental Engineering, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Department of Experimental Biology, Section of Microbiology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Ondrej Malicek
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Tivadar Baltazar
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Jakub Elbl
- Agricultural Research, Ltd., Troubsko, Czechia
- Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
| |
Collapse
|
7
|
Doubling the Space-Time Yield of a Pilot Biogas Reactor with Swine Manure and Cereal Residues by a Closed Loop Feedback Control Based on an Automated Fuzzy Logic Control System. Processes (Basel) 2022. [DOI: 10.3390/pr10122511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The anaerobic digestion of swine manure was performed for more than 2 years in a biogas pilot plant with cereal residues as a mono-input, either by a simple intermittent substrate feeding or by feeding with an automated “autopilot” system under the direction of a Fuzzy logic control (FLC) system, working with a closed-loop feedback control. The pilot plant of the University of Applied Sciences in Nordhausen consisted of a 2.5 m3 dosage tank, a 2.5 m3 digestate tank, and a 1 m3 biogas reactor. Only three control parameters were used for FLC: pH, methane %, and the specific gas production rate (GPR) related to the organic loading rate (OLR), that is GPR/OLR m3 biogas/(kgVS d), vs = volatile solids. The specific GPR was referred to the OLR of the last feeding every 8 h in terms of kgVS/(m3 d). In test period I without an FLC system, a safe process with just an OLR of 4 kgVS/(m3 d) was reached, followed by an overloading and reactor disturbance at ≤6.3 kgVS/(m3 d) as indicated by acidification with volatile fatty acids up to 25,000 mg/L. However, test period II (585 trial days) with an integrated FLC system allowed a safe OLR up to 11 kgVS/(m3 d). Apparently, the microbes themselves directed the speed of substrate feeding by the dynamics of their substrate turnover and by the closed loop feedback control, while the three FLC parameters prevented acidification. Therefore, the application of FLC enabled a doubling of the throughput for a biogas reactor in the same time with a ‘turbo speed’. The concomitant hydraulic residence time (HRT) of only 10 days reduced the stirring and heating costs. The usage of an FLC system should open the door for networked biogas production to enable flexible biogas production on demand.
Collapse
|
8
|
Yang C, Zhang Y, Xue Y, Xue Y. Toward a Socio-Political Approach to Promote the Development of Circular Agriculture: A Critical Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13117. [PMID: 36293695 PMCID: PMC9603357 DOI: 10.3390/ijerph192013117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Under the dual pressure of ensuring global food security and coping with the effects of climate change, many countries have proposed projects of circular agriculture to mitigate the vulnerability of agricultural systems. However, due to the different utilizations of agricultural resources in different countries, there are still some important limitations and obstacles to the promotion of agricultural recycling technologies. This review discusses global circular agriculture projects from a social science perspective. We found that (1) current research on circular agriculture is concentrated in the field of natural sciences with a focus on technological upgrading, neglecting social, political and economic research; (2) top-down circular agriculture projects rely on infrastructure and technical inputs for management, which undermines the focus on public participation and is limited by the timing and intensity of state intervention; (3) the development model led by enterprises or associations relies on cooperation and benefit games with farmers, and its sustainability depends largely on changes in the regulation of the agricultural waste utilization system. Based on this, this review argues that circular agriculture projects are not only technical issues in the field of natural sciences, but also strongly influenced by social development. For future research, we strongly recommend cross-disciplinary cooperation, not limited to technology development.
Collapse
Affiliation(s)
| | | | | | - Yongji Xue
- School of Economics and Management, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
9
|
Körber M, Weinrich S, Span R, Gerber M. Demand-oriented biogas production to cover residual load of an electricity self-sufficient community using a simple kinetic model. BIORESOURCE TECHNOLOGY 2022; 361:127664. [PMID: 35872271 DOI: 10.1016/j.biortech.2022.127664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Flexible biogas production can enable demand-oriented energy supply without the need for expensive gas storage expansions, but poses challenges to the stability of the anaerobic digestion (AD) process. In this work, biogas production of laboratory-scale AD of maize silage and sugar beets was optimized to cover the residual load of an electricity self-sufficient community using a simple process model based on first-order kinetics. Experiments show a good agreement between biogas demand, predicted, and measured biogas production. By optimizing biogas conversion schedules based on the measured gas production, a gas storage capacity of 7-8 h was identified for maximum flexibility, which corresponds to typical gas storage sizes at industrial biogas plants in Germany. Various stability indicators were continuously monitored and proved resilient process conditions. These results demonstrate that demand-oriented biogas production using model predictive control is a promising approach to enable existing biogas plants to provide balancing energy.
Collapse
Affiliation(s)
- Matthias Körber
- Thermodynamics, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Sören Weinrich
- Biochemical Conversion Department, Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Torgauer Straße 116, 04347 Leipzig, Germany
| | - Roland Span
- Thermodynamics, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Mandy Gerber
- Mechatronics and Mechanical Engineering, Bochum University of Applied Sciences, Am Hochschulcampus 1, 44801 Bochum, Germany
| |
Collapse
|
10
|
Mlinar S, Weig AR, Freitag R. Influence of NH 3 and NH 4+ on anaerobic digestion and microbial population structure at increasing total ammonia nitrogen concentrations. BIORESOURCE TECHNOLOGY 2022; 361:127638. [PMID: 35853595 DOI: 10.1016/j.biortech.2022.127638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Despite the extensive research dedicated to ammonia inhibition, the effect of NH3 and NH4+ on each anaerobic digestion stage and the associated microorganisms is still not completely understood. In the past, the focus was mainly on methanogenesis and either on NH3 or total ammonia nitrogen (TAN). Here, anaerobic digestion of two defined substrates, namely starch/NH4Cl and casein, was investigated particularly regarding the effects of different NH3/NH4+ ratios on the involved microorganisms. TAN affected bacteria, primarily gram-positive ones, whereas archaea responded largely to the NH3 concentration. These sensitivity differences are attributed to differences in the corresponding cell-membrane structures. A TAN decrease via stripping performed in two full-scale agricultural biogas plants resulted in increased bacterial diversity, with a pronounced increase in the propionate acetogens' abundance. Based on these data, it is suggested that inhibition can be avoided and processes stabilized in biogas plants by adjusting the NH3/NH4+ ratio, when feeding nitrogen-rich substrates.
Collapse
Affiliation(s)
- Stanislava Mlinar
- Process Biotechnology and Center for Energy Technology (ZET), University of Bayreuth, 95447 Bayreuth, Germany
| | - Alfons R Weig
- Genomics & Bioinformatics, University of Bayreuth, 95447 Bayreuth, Germany
| | - Ruth Freitag
- Process Biotechnology and Center for Energy Technology (ZET), University of Bayreuth, 95447 Bayreuth, Germany.
| |
Collapse
|
11
|
Techno-Economic Assessment of Solid–Liquid Biogas Treatment Plants for the Agro-Industrial Sector. ENERGIES 2022. [DOI: 10.3390/en15124413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The urgent need to meet climate goals provides unique opportunities to promote small-scale farm anaerobic digesters that valorize on-site wastes for producing renewable electricity and heat, thereby cushioning agribusinesses against energy perturbations. This study explored the economic viability of mono-digestion of cow manure (CWM) and piglet manure (PM) in small manured-based 99 kWel plants using three treatment schemes (TS): (1) typical agricultural biogas plant, (2) a single-stage expanded granular sludge bed (EGSB) reactor, and (3) a multistage EGSB with a continuous stirred tank reactor. The economic evaluation attempted to take advantage of the financial incentives provided by The Renewable Energy Sources Act in Germany. To evaluate these systems, batch tests on raw and solid substrate fractions were conducted. For the liquid fraction, data of continuous tests obtained in a laboratory was employed. The economical evaluation was based on the dynamic indicators of net present value and internal return rate (IRR). Sensitivity analyses of the electricity and heat selling prices and hydraulic retention time were also performed. Furthermore, an incremental analysis of IRR was conducted to determine the most profitable alternative. The most influential variable was electricity selling price, and the most profitable alternatives were TS1 (CWM) > TS1 (PM) > TS3 (CWM). However, further studies on co-digestion using TS3 are recommended because this scheme potentially provides the greatest technical flexibility and highest environmental sustainability.
Collapse
|
12
|
Dee SJ, Hietala DC, Sulmonetti TP. Process hazard considerations for utilization of renewable methane from biogas. PROCESS SAFETY PROGRESS 2022. [DOI: 10.1002/prs.12389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sean J. Dee
- Thermal Sciences Exponent, Inc. Warrenville Illinois USA
| | | | | |
Collapse
|
13
|
Sufficiency E, Qamar SA, Ferreira LFR, Franco M, Iqbal HM, Bilal M. Emerging biotechnological strategies for food waste management: A green leap towards achieving high-value products and environmental abatement. ENERGY NEXUS 2022; 6:100077. [DOI: 10.1016/j.nexus.2022.100077] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
14
|
Mertins A, Wawer T. How to use biogas?: A systematic review of biogas utilization pathways and business models. BIORESOUR BIOPROCESS 2022; 9:59. [PMID: 38647793 PMCID: PMC10992758 DOI: 10.1186/s40643-022-00545-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/30/2022] [Indexed: 11/10/2022] Open
Abstract
There are many options for the utilization of biogas in different energy sectors (power, heat, mobility). The technical possibilities of using biogas are more diverse than the actual business models applied in the biogas industry. This paper shows the possible utilization pathways of biogas, divided into coupled power and heat generation, direct utilization and upgrading to a gas of a higher value. Subsequently, an overview of the business models discussed is given by a systematic literature review. The latter shows that the investigation of biogas business models is focused mainly on the last decade and has increased slightly over time. The regions of investigation can be found worldwide, with a clear focus on Europe. Direct use is studied mainly in the Asian and African regions. In the European context, a shift from investigating combined heat and power use to upgrading the biogas produced is evident.
Collapse
Affiliation(s)
- Anica Mertins
- Osnabrück University of Applied Sciences, Osnabrück, Germany.
| | - Tim Wawer
- Osnabrück University of Applied Sciences, Lingen (Ems), Germany
| |
Collapse
|
15
|
Donkor KO, Gottumukkala LD, Lin R, Murphy JD. A perspective on the combination of alkali pre-treatment with bioaugmentation to improve biogas production from lignocellulose biomass. BIORESOURCE TECHNOLOGY 2022; 351:126950. [PMID: 35257881 DOI: 10.1016/j.biortech.2022.126950] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Anaerobic digestion (AD) is a bioprocess technology that integrates into circular economy systems, which produce renewable energy and biofertilizer whilst reducing greenhouse gas emissions. However, improvements in biogas production efficiency are needed in dealing with lignocellulosic biomass. The state-of-the-art of AD technology is discussed, with emphasis on feedstock digestibility and operational difficulty. Solutions to these challenges including for pre-treatment and bioaugmentation are reviewed. This article proposes an innovative integrated system combining alkali pre-treatment, temperature-phased AD and bioaugmentation techniques. The integrated system as modelled has a targeted potential to achieve a biodegradability index of 90% while increasing methane production by 47% compared to conventional AD. The methane productivity may also be improved by a target reduction in retention time from 30 to 20 days. This, if realized has the potential to lower energy production cost and the levelized cost of abatement to facilitate an increased resource of sustainable commercially viable biomethane.
Collapse
Affiliation(s)
- Kwame O Donkor
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland; Celignis Limited, Mill Court, Upper William Street, Limerick V94 N6D2, Ireland
| | | | - Richen Lin
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 211189, PR China.
| | - Jerry D Murphy
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland
| |
Collapse
|
16
|
Outflow from a Biogas Plant as a Medium for Microalgae Biomass Cultivation—Pilot Scale Study and Technical Concept of a Large-Scale Installation. ENERGIES 2022. [DOI: 10.3390/en15082912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Microalgae-based technologies have huge potential for application in the environment sector and the bio-energy industry. However, their cost-efficiency has to be improved by drawing on design and operation data for large-scale installations. This paper presents a technical concept of an installation for large-scale microalgae culture on digestate liquor, and the results of a pilot-scale study to test its performance. The quality of non-treated digestate has been shown to be insufficient for direct use as a growth medium due to excess suspended solids, turbidity, and organic matter content, which need to be reduced. To that end, this paper proposes a system based on mechanical separation, flotation, and pre-treatment on a biofilter. The culture medium fed into photobioreactors had the following parameters after the processing: COD—340 mgO2/dm3, BOD5—100 mgO2/dm3, TN—900 mg/dm3, and TP—70 mg/dm3. The installation can produce approx. 720 kgVS/day of microalgal biomass. A membrane unit and a thickening centrifuge (thickener) were incorporated into the design to separate and dehydrate the microalgal biomass, respectively. The total energy consumption approximated 1870 kWh/day.
Collapse
|
17
|
Optimization of Biogas Production from Sewage Sludge: Impact of Combination with Bovine Dung and Leachate from Municipal Organic Waste. SUSTAINABILITY 2022. [DOI: 10.3390/su14084380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biogas is a bioenergy produced from organic or all types of biological degradable wastes and could make it possible to limit energy dependence. Sludge is the best alternative substrate for biogas production at a community-level biogas plant. The literature shows that co-digestion can increase the efficiency of sludge anaerobic digestion. This research, thus, focused on (i) determining the conditions of optimal biogas production in the co-digestion of primary sludge (PS) and bovine dung (BD), (ii) evaluating the impact of leachate from organic waste and cellulose on biogas production. Primary sludge was collected in Bacau town wastewater treatment plant in Romania. The sampling of municipal solid waste was carried out in Ouagadougou pre-collect centers (Burkina Faso). Batch tests were conducted in glass bottles through anaerobic digestion (1 L). The following parameters were monitored during the digestion process: pH, volatile fatty acid (VFA), volatile solids (VS) and biogas production. Primary sludge, bovine dung and leachate showed 50.51%, 72.41% and 70.48% of volatile solids content, respectively. Sludge showed good stability, unlike the other two substrates, such as bovine dung and leachate, with VFA to alkalinity ratio 0.54. Leachate from organic waste had high values of VFA to alkalinity ratio > 3600. Co-digestion could make it possible to raise the levels of organic matter and improve microbial growth and the stability of anaerobic biomass. The best biogas production yield of 152.43 mL/g VS was obtained with a combination of 30% bovine dung and 70% primary sludge at 45 °C, with a 21.57% reduction in organic matter. An improvement in biogas productivity was effective with the addition of leachate, which could be used as an additive element during anaerobic digestion.
Collapse
|
18
|
|
19
|
Janesch E, Pereira J, Neubauer P, Junne S. Phase Separation in Anaerobic Digestion: A Potential for Easier Process Combination? FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.711971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The flexibilization of bioenergy production has the potential to counteract partly other fluctuating renewable energy sources (such as wind and solar power). As a weather-independent energy source, anaerobic digestion (AD) can offer on-demand energy supply through biogas production. Separation of the stages in anaerobic digestion represents a promising strategy for the flexibilization of the fermentative part of biogas production. Segregation in two reactor systems facilitates monitoring and control of the provision of educts to the second methanogenic stage, thus controlling biogas production. Two-stage operation has proven to reach similar or even higher methane yields and biogas purities than single-stage operation in many different fields of application. It furthermore allows methanation of green hydrogen and an easier combination of material and energy use of many biogenic raw and residual biomass sources. A lot of research has been conducted in recent years regarding the process phase separation in multi-stage AD operation, which includes more than two stages. Reliable monitoring tools, coupled with effluent recirculation, bioaugmentation and simulation have the potential to overcome the current drawbacks of a sophisticated and unstable operation. This review aims to summarize recent developments, new perspectives for coupling processes for energy and material use and a system integration of AD for power-to-gas applications. Thereby, cell physiological and engineering aspects as well as the basic economic feasibility are discussed. As conclusion, monitoring and control concepts as well as suitable separation technologies and finally the data basis for techno-economic and ecologic assessments have to be improved.
Collapse
|
20
|
Weinrich S, Mauky E, Schmidt T, Krebs C, Liebetrau J, Nelles M. Systematic simplification of the Anaerobic Digestion Model No. 1 (ADM1) - Laboratory experiments and model application. BIORESOURCE TECHNOLOGY 2021; 333:125104. [PMID: 33901913 DOI: 10.1016/j.biortech.2021.125104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Due to a limited number of available measurements on agricultural biogas plants, established process models, such as the Anaerobic Digestion Model No. 1 (ADM1), are rarely applied in practise. To provide a reliable basis for model-based monitoring and control, different model simplifications of the ADM1 were implemented for process simulation of semi-continuous anaerobic digestion experiments using agricultural substrates (maize silage, sugar beet silage, rye grain and cattle manure) and industrial residues (grain stillage). Individual model structures enable a close depiction of biogas production rates and characteristic intermediates (ammonium nitrogen, propionic and acetic acid) with equal accuracy as the original ADM1. The impact of different objective functions and standard parameter values on parameter estimates of first-order hydrolysis constants and microbial growth rates were evaluated. Due to the small number of required model parameters and suitable system characteristics, simplified model structures show clear advantages for practical application on agricultural biogas plants.
Collapse
Affiliation(s)
- Sören Weinrich
- Biochemical Conversion Department, Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Torgauer Straße 116, 04347 Leipzig, Germany.
| | - Eric Mauky
- Biochemical Conversion Department, Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Torgauer Straße 116, 04347 Leipzig, Germany
| | - Thomas Schmidt
- Biochemical Conversion Department, Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Torgauer Straße 116, 04347 Leipzig, Germany
| | - Christian Krebs
- Biochemical Conversion Department, Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Torgauer Straße 116, 04347 Leipzig, Germany
| | - Jan Liebetrau
- Biochemical Conversion Department, Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Torgauer Straße 116, 04347 Leipzig, Germany
| | - Michael Nelles
- Biochemical Conversion Department, Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Torgauer Straße 116, 04347 Leipzig, Germany; Faculty of Agricultural and Environmental Sciences, Chair of Waste and Resource Management, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
| |
Collapse
|
21
|
Weinrich S, Nelles M. Systematic simplification of the Anaerobic Digestion Model No. 1 (ADM1) - Model development and stoichiometric analysis. BIORESOURCE TECHNOLOGY 2021; 333:125124. [PMID: 33910118 DOI: 10.1016/j.biortech.2021.125124] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Rigorous process models provide a reliable basis for model-based monitoring and control of anaerobic digestion plants. Due to the complex model structure and non-linear system characteristics, the established Anaerobic Digestion Model No. 1 (ADM1) is rarely applied in industrial plant operation. The present investigation proposes a systematic procedure for successive model simplification and presents the description of five model variants of a mass-based ADM1. Individual model structures greatly differ in their number of implemented process phases, characteristic components and required parameters. Simplified model variants combine nutrient degradation and biogas formation based on first-order sum reactions, whereas complex model structures describe individual degradation pathways and intermediates during acido- and acetogenesis. Characteristic features of the derived model structures as well as the stoichiometric methane potentials and microbial biomass yields of the underlying degradation pathways of individual model variations are evaluated and discussed in detail.
Collapse
Affiliation(s)
- Sören Weinrich
- Biochemical Conversion Department, Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Torgauer Straße 116, 04347 Leipzig, Germany.
| | - Michael Nelles
- Biochemical Conversion Department, Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Torgauer Straße 116, 04347 Leipzig, Germany; Faculty of Agricultural and Environmental Sciences, Chair of Waste and Resource Management, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
| |
Collapse
|
22
|
Hassa J, Klang J, Benndorf D, Pohl M, Hülsemann B, Mächtig T, Effenberger M, Pühler A, Schlüter A, Theuerl S. Indicative Marker Microbiome Structures Deduced from the Taxonomic Inventory of 67 Full-Scale Anaerobic Digesters of 49 Agricultural Biogas Plants. Microorganisms 2021; 9:1457. [PMID: 34361893 PMCID: PMC8307424 DOI: 10.3390/microorganisms9071457] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/24/2022] Open
Abstract
There are almost 9500 biogas plants in Germany, which are predominantly operated with energy crops and residues from livestock husbandry over the last two decades. In the future, biogas plants must be enabled to use a much broader range of input materials in a flexible and demand-oriented manner. Hence, the microbial communities will be exposed to frequently varying process conditions, while an overall stable process must be ensured. To accompany this transition, there is the need to better understand how biogas microbiomes respond to management measures and how these responses affect the process efficiency. Therefore, 67 microbiomes originating from 49 agricultural, full-scale biogas plants were taxonomically investigated by 16S rRNA gene amplicon sequencing. These microbiomes were separated into three distinct clusters and one group of outliers, which are characterized by a specific distribution of 253 indicative taxa and their relative abundances. These indicative taxa seem to be adapted to specific process conditions which result from a different biogas plant operation. Based on these results, it seems to be possible to deduce/assess the general process condition of a biogas digester based solely on the microbiome structure, in particular on the distribution of specific indicative taxa, and without knowing the corresponding operational and chemical process parameters. Perspectively, this could allow the development of detection systems and advanced process models considering the microbial diversity.
Collapse
Affiliation(s)
- Julia Hassa
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany; (J.H.); (A.P.); (A.S.)
- Department Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany;
| | - Johanna Klang
- Department Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany;
| | - Dirk Benndorf
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany;
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
- Microbiology, Anhalt University of Applied Sciences, Bernburger Straße 55, 06366 Köthen, Germany
| | - Marcel Pohl
- Biochemical Conversion Department, DBFZ Deutsches Biomasseforschungszentrum Gemeinnützige GmbH, Torgauer Straße 116, 04347 Leipzig, Germany;
| | - Benedikt Hülsemann
- The State Institute of Agricultural Engineering and Bioenergy, University of Hohenheim, Garbenstraße 9, 70599 Stuttgart, Germany;
| | - Torsten Mächtig
- Institute of Agricultural Engineering, Kiel University, Max-Eyth-Str. 6, 24118 Kiel, Germany;
| | - Mathias Effenberger
- Institute for Agricultural Engineering and Animal Husbandry, Bavarian State Research Center for Agriculture, Vöttinger Str. 36, 85354 Freising, Germany;
| | - Alfred Pühler
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany; (J.H.); (A.P.); (A.S.)
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany; (J.H.); (A.P.); (A.S.)
| | - Susanne Theuerl
- Department Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany;
| |
Collapse
|
23
|
Land-Use Change and Bioenergy Production: Soil Consumption and Characterization of Anaerobic Digestion Plants. ENERGIES 2021. [DOI: 10.3390/en14134001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The exploitation of bioenergy plays a key role in the process of decarbonising the economic system. Huge efforts have been made to develop bioenergy and other renewable energy systems, but it is necessary to investigate the costs and problems associated with these technologies. Soil consumption and, in particular, soil sealing are some of these aspects that should be carefully evaluated. Agricultural biogas plants (ABPs) often remove areas dedicated to agricultural activities and require broad paved areas for the associated facilities. This study aimed to (i) assess the surfaces destined to become facilities and buildings in ABPs, (ii) correlate these surfaces with each other and to the installed powers of the plants, and (iii) estimate the consumption of soil in bioenergy applications in Italy. Two hundred ABPs were sampled from an overall population of 1939, and the extents of the facilities were measured by aerial and satellite observations. An ABP with an installed power of 1000 kW covers an average surface area of up to 23,576 m2. Most of this surface, 97.9%, is obtained from previously cultivated areas. The ABP analysis proved that 24.7 m2 of surface area produces 1 kW of power by bioenergy. The obtained model estimated a total consumption of soil by ABPs in Italy of 31,761,235 m2. This research can support stakeholders in cost-benefit analyses to design energy systems based on renewable energy sources.
Collapse
|
24
|
Empirical Validation of a Biogas Plant Simulation Model and Analysis of Biogas Upgrading Potentials. ENERGIES 2021. [DOI: 10.3390/en14092424] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biogas plants may support the transformation towards renewable-based and integrated energy systems by providing dispatchable co-generation as well as opportunities for biogas upgrading or power-to-X conversion. In this paper, a simulation model that comprises the main dynamics of the internal processes of a biogas plant is developed. Based on first-order kinetics of the anaerobic digestion process, the biogas production of an input feeding schedule of raw material can be estimated. The output of the plant in terms of electrical and thermal energy is validated against empirical data from a 3-MW biogas plant on the Danish island of Bornholm. The results show that the model provides an accurate representation of the processes within a biogas plant. The paper further provides insights on the functioning of the biogas plant on Bornholm as well as discusses upgrading potentials of biogas to biomethane at the plant from an energy perspective.
Collapse
|
25
|
Development of a Mathematical Model and Validation for Methane Production Using Cow Dung as Substrate in the Underground Biogas Digester. Processes (Basel) 2021. [DOI: 10.3390/pr9040643] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
South Africa is highly dependent on conventional fuels from non-renewable energy sources such as coal and fossil fuels. The methane from biogas is a renewable energy source for generating electricity using a combined heat and power plant. Therefore, the aim of the study is to develop and validate a mathematical model for predicting methane production in an underground biogas digester. The developed model was able to predict the production of methane gas as separate entity differing from other models. A total of 286 datasets were used as a trained dataset for the model development, and 144 datasets served as test data for the validation of the model, making a total of 430 measured datasets of all the predictors. The determination coefficient (R2) and the p-value of the predicted and calculated methane yield were 0.962 and 0.920, respectively. The high R2 in the present study confirms a good correlation between the model and experimental value. Hence, the model is of significance because it is applicable in predicting the performance of methane production of systems of the same design used in different locations, thereby arriving at the same constant values. From the study, the ambient weather factors (ambient temperature, relative humidity, and global horizontal irradiance) affected the methane production. Additionally, the indoor parameters (pH, gas temperature, slurry bottom and slurry top temperature) impacted on the yield of the methane production because the scaling factors associated with these quantities are non-zero real numbers. Hence, the scope of the study did not consider the volume of the biogas digester as an input parameter to the response.
Collapse
|
26
|
Baena-Moreno FM, Reina TR, Rodríguez-Galán M, Navarrete B, Vilches LF. Synergizing carbon capture and utilization in a biogas upgrading plant based on calcium chloride: Scaling-up and profitability analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143645. [PMID: 33250242 DOI: 10.1016/j.scitotenv.2020.143645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/26/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Herein we analyze the profitability of a novel regenerative process to synergize biogas upgrading and carbon dioxide utilization. Our proposal is a promising alternative which allows to obtain calcium carbonate as added value product while going beyond traditional biogas upgrading methods with high thermal energy consumption. Recently we have demonstrated the experimental viability of this route. In this work, both the scale-up and the profitability of the process are presented. Furthermore, we analyze three representative scenarios to undertake a techno-economic study of the proposed circular economy process. The scale-up results demonstrate the technical viability of our proposal. The precipitation efficiency and the product quality are still remarkable with the increase of the reactor size. The techno-economic analysis reveals that the implementation of this circular economy strategy is unprofitable without subsidies. Nonetheless, the results are somehow encouraging as the subsides needed to reach profitability are lower than in other biogas upgrading and carbon dioxide utilization proposals. Indeed, for the best-case scenario, a feed-in tariff incentive of 4.3 €/MWh makes the approach profitable. A sensitivity study through tornado analysis is also presented, revealing the importance of reducing bipolar membrane electrodialysis energy consumption. Overall our study envisages the big challenge that the EU faces during the forthcoming years. The evolution towards bio-based and circular economies requires the availability of economic resources and progress on engineering technologies.
Collapse
Affiliation(s)
- Francisco M Baena-Moreno
- Chemical and Environmental Engineering Department, Technical School of Engineering, University of Seville, C/ Camino de los Descubrimientos s/n, Sevilla 41092, Spain; Department of Chemical and Process Engineering, University of Surrey, GU2 7XH Guildford, United Kingdom.
| | - T R Reina
- Department of Chemical and Process Engineering, University of Surrey, GU2 7XH Guildford, United Kingdom; Departamento de Química Inorgánica, Universidad de Sevilla, Instituto de Ciencias de Materiales de Sevilla Centro mixto US-CSIC, Avda. Américo Vespucio 49, 41092 Seville, Spain.
| | - Mónica Rodríguez-Galán
- Chemical and Environmental Engineering Department, Technical School of Engineering, University of Seville, C/ Camino de los Descubrimientos s/n, Sevilla 41092, Spain
| | - Benito Navarrete
- Chemical and Environmental Engineering Department, Technical School of Engineering, University of Seville, C/ Camino de los Descubrimientos s/n, Sevilla 41092, Spain
| | - Luis F Vilches
- Chemical and Environmental Engineering Department, Technical School of Engineering, University of Seville, C/ Camino de los Descubrimientos s/n, Sevilla 41092, Spain
| |
Collapse
|
27
|
Energetic and Economic Evaluation of Zero-Waste Fish Co-Stream Processing. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052358. [PMID: 33670950 PMCID: PMC7967757 DOI: 10.3390/ijerph18052358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 11/21/2022]
Abstract
This study evaluates the possibility of recovery of high-quality valuable fish oil and proteins from fish co-streams by traditional means or a combination of several technologies. A techno-economically feasible and sustainable zero-waste process is needed for full utilisation of this co-stream’s potential. This study aims to determine the energy efficiency and economic feasibility of four different zero-waste bio-refineries based on salmon filleting co-streams. The study covers four concepts: (I) biogas and fertiliser production from salmon co-streams, (II) fish silage production, (III) thermal processing of salmon co-streams for producing oil, protein concentrate, and meal, and (IV) novel two-stage thermal and enzymatic process for producing high-quality oil and protein hydrolysate, while the solid residue is converted to biogas and fertilisers. Monte Carlo simulation is used to evaluate uncertainties in economic evaluation. The results show that the two-stage processing of fish co-streams leads to recovery of both high-quality marine oil and proteins, showing the largest profitability and return on investment during the economic analysis. It is a more tempting option than the currently used thermal treatment or traditional silage processes. The possibility of producing food-grade fish protein hydrolysate is the biggest benefit here. Concepts studied are examples of zero-waste processing of bioproducts and illustrate the possibilities and benefits of fully utilising the different fractions of fish as fillets, oil, protein, fertilisers, and energy production.
Collapse
|
28
|
Spatially Explicit Model for Anaerobic Co-Digestion Facilities Location and Pre-Dimensioning Considering Spatial Distribution of Resource Supply and Biogas Yield in Northwest Portugal. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The high volumes of animal manure and sewage sludge, as a consequence of the development of intensive and specialized cattle dairy farms in peri-urban areas, pose challenges to local environmental quality and demands for systems innovation. Besides these negative impacts, energy recovery from biogas produced in anaerobic co-digestion processes should contribute to local sustainable development. This research considers technical data obtained from the optimization of biomethanization processes using sewage sludge and cattle manure liquid fraction, aiming to develop a spatially explicit model including multicriteria evaluation and an analytical hierarchy process to locate biogas production facilities, allocate energy resources and consider biogas unit pre-dimensioning analysis. According to the biophysical conditions and socioeconomic dynamics of the study area (Vila do Conde, Northwest Portugal), a spatially explicit model using multicriteria and multiobjective techniques allowed the definition of suitable locations, as well as the allocation of resources and support pre-dimensioning of biogas facilities. A p-median model allowed us to allocate resources and pre-dimensioning biogas facilities according to distance and accessibility elements. The results indicate: (i) the location of areas with adequate environmental conditions and socioeconomic suitability advantages to install biogas production facilities, and (ii) the ability to compare the options of centralized or distributed location alternatives and associated pre-dimensioning.
Collapse
|
29
|
Correlations between the Composition of Liquid Fraction of Full-Scale Digestates and Process Conditions. ENERGIES 2021. [DOI: 10.3390/en14040971] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fast development of centralized agricultural biogas plants leads to high amounts of digestate production. The treatment and disposal of liquid fractions after on-site digestate solid–liquid separation remains problematic due to their high organic, nutrient and aromatic contents. This work aims to study the variability of the remaining compounds in the digestate liquid fractions in relation to substrate origin, process parameters and solid–liquid separation techniques. Twenty-nine digestates from full-scale codigestion biogas plants and one waste activated sludge (WAS) digestate were collected and characterized. This study highlighted the combined effect of the solid–liquid separation process and the anaerobic digestion feedstock on the characteristics of liquid fractions of digestates. Two major clusters were found: (1) liquid fractions from high efficiency separation process equipment (e.g., centrifuge and others with addition of coagulant, flocculent or polymer) and (2) liquid fractions from low efficiency separation processes (e.g., screw press, vibrating screen and rotary drum), in this latter case, the concentration of chemical oxygen demand (COD) was associated with the proportion of cow manure and energy crops at biogas plant input. Finally, SUVA254, an indicator for aromatic molecule content and the stabilization of organic matter, was associated with the hydraulic retention time (HRT).
Collapse
|
30
|
Design, Analysis and Implementation of the Tapped-Inductor Boost Current Converter on Current Based System. ENERGIES 2021. [DOI: 10.3390/en14040888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Power converters play a crucial role in renewable energy systems. Most well-known power conversion topologies are voltage mode, not current mode. Current mode converters are more appropriate for renewable energy systems such as photovoltaic systems since solar panels are typical current sources. The vast usage of battery as energy storage is also a current sink for constant current mode charging. Utilizing current mode converters should be more straightforward and judicious. In this study, a new topology for the tapped-inductor power conversion circuit family is introduced. The proposed topology has been investigated thoroughly based on theories, simulations and experiments. The boost version is examined as an example to downstate the performance. A detailed comparison with the conventional boost current converter is conducted in this paper.
Collapse
|
31
|
Operating Performance of Full-Scale Agricultural Biogas Plants in Germany and China: Results of a Year-Round Monitoring Program. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Germany (DE) and China (CN) have different political approaches in supporting the biogas sector. Three German and three Chinese large-scale biogas plants (BGPs) were evaluated as part of a year-round monitoring program. Laboratory methods were utilized to analyze the chemical indicators. Results showed a stable anaerobic digestion process without system failures in all BGPs. The methane yield had a range of 0.23–0.35 m3CH4/kgODM for DE BGPs and 0.11–0.22 m3CH4/kgODM for CN BGPs, due to different substrates and working temperatures. Financial analyses indicated that DE BGPs are viable under their current feed-in tariffs contracts. Their financial internal rate of return (IRR) ranged between 8 and 22%. However, all CN BGPs had negative IRRs, indicating that they are financially unfeasible. Risk analyses illustrated that DE BGPs will face financial nonviability if benefits decrease by 9–33% or costs increase by 10–49%, or if a combined worse case (benefit decrease and cost increase) of 5–20% occurs. Incentives to BGP operations are particularly important in China, where the government should consider switching the construction-based subsidy to a performance-based subsidy system to motivate the operators. BGP monitoring is necessary to understand the performance, in addition to briefing policymakers in case a policy reform is needed.
Collapse
|
32
|
Kumar A. Current and Future Perspective of Microalgae for Simultaneous Wastewater Treatment and Feedstock for Biofuels Production. CHEMISTRY AFRICA 2021. [DOI: 10.1007/s42250-020-00221-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Abstract
In the biogas plants, organic material is converted to biogas under anaerobic conditions through physical and biochemical processes. From supply of the raw material to the arrival of the products to customers, there are serial processes which should be sufficiently monitored for optimizing the efficiency of the whole process. In particular, the anaerobic digestion process, which consists of sequential complex biological reactions, requires improved monitoring to prevent inhibition. Conventional implemented methods at the biogas plants are not adequate for monitoring the operational parameters and finding the correlation between them. As Artificial Intelligence has been integrated in different areas of life, the integration of it into the biogas production process will be inevitable for the future of the biogas plant operation. This review paper first examines the need for monitoring at the biogas plants with giving details about the process and process monitoring as well. In the following sections, the current situation of implementations of Artificial Intelligence in the biogas plant operation and in the similar industries will be represented. Moreover, considering that all the information gathered from literature and operational needs, an implementation model will be presented.
Collapse
|
34
|
Gökgöz F, Winkler M, Barchmann T, Weinrich S, Liebetrau J, Nelles M. Combining Electricity and Fuel Supply: Operational Strategies for Biogas Plants. Chem Eng Technol 2020. [DOI: 10.1002/ceat.202000268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fatih Gökgöz
- DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH Department of Biochemical Conversion Torgauer Strasse 116 04347 Leipzig Germany
| | - Manuel Winkler
- DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH Department of Biochemical Conversion Torgauer Strasse 116 04347 Leipzig Germany
| | - Tino Barchmann
- DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH Department of Biochemical Conversion Torgauer Strasse 116 04347 Leipzig Germany
| | - Sören Weinrich
- DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH Department of Biochemical Conversion Torgauer Strasse 116 04347 Leipzig Germany
| | - Jan Liebetrau
- Rytec GmbH Pariser Ring 37 76532 Baden-Baden Germany
| | - Michael Nelles
- DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH Department of Biochemical Conversion Torgauer Strasse 116 04347 Leipzig Germany
- University Rostock Waste and Resource Management Justus-von-Liebig-Weg 6 18059 Rostock Germany
| |
Collapse
|
35
|
Abstract
There is a growing need of substrate flexibility for biobased production of energy and value-added products that allows the application of variable biodegradable residues within a circular economy. It can be used to balance fluctuating energy provision of other renewable sources. Hydrolysis presents one of the biggest limitations during anaerobic digestion. Methods to improve it will result in broader process applicability and improved integration into regional material cycles. Recently, one focus of anaerobic digestion research has been directed to systems with a separate hydrolysis–acidogenesis stage as it might be promised to improve process performance. Conditions can be adjusted to each class of microorganisms individually without harming methanogenic microorganisms. Extensive research of separate biomass pretreatment via biological, chemical, physical or mixed methods has been conducted. Nevertheless, several methods lack economic efficiency, have a high environmental impact or focus on specific substrates. Pretreatment via a separate hydrolysis stage as cell-driven biotransformation in a suspension might be an alternative that enables high yields, flexible feeding and production, and a better process control. In this review, we summarize existing technologies for microbial hydrolytic biotransformation in a separate reactor stage and the impacts of substrate, operational parameters, combined methods and process design as well as remaining challenges.
Collapse
|
36
|
Potential Bioenergy Production from Miscanthus × giganteus in Brandenburg: Producing Bioenergy and Fostering Other Ecosystem Services while Ensuring Food Self-Sufficiency in the Berlin-Brandenburg Region. SUSTAINABILITY 2020. [DOI: 10.3390/su12187731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Miscanthus × giganteus (hereafter Miscanthus) is a perennial crop characterized by its high biomass production, low nutrient requirements, its ability for soil restoration, and its cultivation potential on marginal land. The development of the bioenergy sector in the state of Brandenburg (Germany), with maize as the dominant crop, has recently drawn attention to its negative environmental impacts, competition with food production, and uncertainties regarding its further development toward the state’s bioenergy targets. This study aimed to estimate the potential bioenergy production in Brandenburg by cultivating Miscanthus only on marginal land, thereby avoiding competition with food production in the Berlin-Brandenburg city-region (i.e., foodshed), after using the Metropolitan Foodshed and Self-sufficiency Scenario (MFSS) model. We estimated that by 2030, the Berlin-Brandenburg foodshed would require around 1.13 million hectares to achieve 100% food self-sufficiency under the business as usual (BAU) scenario, and hence there would be around 390,000 ha land left for bioenergy production. Our results suggest that the region would require about 569,000 ha of land of maize to generate 58 PJ—the bioenergy target of the state of Brandenburg for 2030—which is almost 179,000 ha more than the available area for bioenergy production. However, under Miscanthus plantation, the required area would be reduced by 2.5 times to 232,000 ha. Therefore, Miscanthus could enable Brandenburg to meet its bioenergy target by 2030, while at the same time avoiding the trade-offs with food production, and also providing a potential for soil organic carbon (SOC) sequestration of around 255,200 t C yr-1, leading to an improvement in the soil fertility and other ecosystem services (e.g., biodiversity), compared with bioenergy generated from maize.
Collapse
|
37
|
Taube F, Vogeler I, Kluß C, Herrmann A, Hasler M, Rath J, Loges R, Malisch CS. Yield Progress in Forage Maize in NW Europe-Breeding Progress or Climate Change Effects? FRONTIERS IN PLANT SCIENCE 2020; 11:1214. [PMID: 33013943 PMCID: PMC7461780 DOI: 10.3389/fpls.2020.01214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Yield increases in forage maize (Zea mays L.) in NW Europe over time are well documented. The driving causes for these, however, remain unclear as there is little information available regarding the role of plant traits triggering this yield progress. Ten different hybrids from the same maturity group, which have typically been cultivated in Northwest Germany from 1970 to recent and are thus representing breeding progress over four decades, were selected for a 2-year field study in northern Germany. Traits that were investigated included leaf area index, leaf architecture, photosynthesis, radiation use efficiency, root mass, root length density, and turnover. Based on a mixed model analysis with these traits as co-variates, parameters related to leaf characteristics, in particular the number and length of leaves, the radiation use efficiency, and the leaf orientation, were identified as most influential on the yield progress (0.13 tons ha-1 year-1). In contrast to our hypothesis, root biomass only increased negligibly in newer hybrids compared to older ones, confirming the 'functional equilibrium' theory for high input production systems. Due to an abundance of nutrients and water in such high input systems, there is no incentive for breeders to select for carbon partitioning toward the rooting system. Breeding evidence to increase forage quality were also negligible, with no change in cob starch concentration, forage digestibility, nor NDF content and NDF digestibility. The observed increase in yield over the last four decades is due to a combination of increased temperature sums (~240 GDD within 40 years), and a higher radiation interception and radiation use efficiency. This higher radiation interception was driven by an increased leaf area index, with a higher number of leaves (16 instead of 14 leaves within 40 years) and longer leaves of newer compared to older hybrids. Future selection and adaptation of maize hybrids to changing environmental conditions are likely to be the key for high productivity and quality and for the economic viability of maize growing and expansion in Northern Europe.
Collapse
Affiliation(s)
- Friedhelm Taube
- Kiel University, Grass Forage Science/Organic Agriculture, Christian Albrechts University, Kiel, Germany
- Grass Based Dairy Systems, Animal Production Systems Group, Wageningen University (WUR), Wageningen, Netherlands
| | - Iris Vogeler
- Kiel University, Grass Forage Science/Organic Agriculture, Christian Albrechts University, Kiel, Germany
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Christof Kluß
- Kiel University, Grass Forage Science/Organic Agriculture, Christian Albrechts University, Kiel, Germany
| | - Antje Herrmann
- Kiel University, Grass Forage Science/Organic Agriculture, Christian Albrechts University, Kiel, Germany
| | - Mario Hasler
- Kiel University, Grass Forage Science/Organic Agriculture, Christian Albrechts University, Kiel, Germany
| | | | - Ralf Loges
- Kiel University, Grass Forage Science/Organic Agriculture, Christian Albrechts University, Kiel, Germany
| | - Carsten S. Malisch
- Kiel University, Grass Forage Science/Organic Agriculture, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
38
|
Theuerl S, Klang J, Hülsemann B, Mächtig T, Hassa J. Microbiome Diversity and Community-Level Change Points within Manure-based small Biogas Plants. Microorganisms 2020; 8:microorganisms8081169. [PMID: 32752188 PMCID: PMC7464807 DOI: 10.3390/microorganisms8081169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 12/21/2022] Open
Abstract
Efforts to integrate biogas plants into bioeconomy concepts will lead to an expansion of manure-based (small) biogas plants, while their operation is challenging due to critical characteristics of some types of livestock manure. For a better process understanding, in this study, three manure-based small biogas plants were investigated with emphasis on microbiome diversity. Due to varying digester types, feedstocks, and process conditions, 16S rRNA gene amplicon sequencing showed differences in the taxonomic composition. Dynamic variations of each investigated biogas plant microbiome over time were analyzed by terminal restriction fragment length polymorphism (TRFLP), whereby nonmetric multidimensional scaling (NMDS) revealed two well-running systems, one of them with a high share of chicken manure, and one unstable system. By using Threshold Indicator Taxa Analysis (TITAN), community-level change points at ammonium and ammonia concentrations of 2.25 g L-1 and 193 mg L-1 or volatile fatty acid concentrations of 0.75 g L-1were reliably identified which are lower than the commonly reported thresholds for critical process stages based on chemical parameters. Although a change in the microbiome structure does not necessarily indicate an upcoming critical process stage, the recorded community-level change points might be a first indication to carefully observe the process.
Collapse
Affiliation(s)
- Susanne Theuerl
- Department Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany; (J.K.); or (J.H.)
- Correspondence: ; Tel.: +49-331-5699-900
| | - Johanna Klang
- Department Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany; (J.K.); or (J.H.)
| | - Benedikt Hülsemann
- University of Hohenheim, The State Institute of Agricultural Engineering and Bioenergy, 70599 Stuttgart, Germany;
| | - Torsten Mächtig
- Kiel University, Institute of Agricultural Engineering, 24098 Kiel, Germany;
| | - Julia Hassa
- Department Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany; (J.K.); or (J.H.)
- Center for Biotechnology (CeBiTec), Genome Research of Industrial Microorganisms, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
39
|
Abstract
The biogas production technology has improved over the last years for the aim of reducing the costs of the process, increasing the biogas yields, and minimizing the greenhouse gas emissions. To obtain a stable and efficient biogas production, there are several design considerations and operational parameters to be taken into account. Besides, adapting the process to unanticipated conditions can be achieved by adequate monitoring of various operational parameters. This paper reviews the research that has been conducted over the last years. This review paper summarizes the developments in biogas design and operation, while highlighting the main factors that affect the efficiency of the anaerobic digestion process. The study’s outcomes revealed that the optimum operational values of the main parameters may vary from one biogas plant to another. Additionally, the negative conditions that should be avoided while operating a biogas plant were identified.
Collapse
|
40
|
Abstract
This paper aims to provide a bibliometric analysis of publication trends on the themes of biomass and bioenergy worldwide. A wide range of studies have been performed in the field of the usage of biomass for energy production, in order to contribute to the green transition from fossil fuels to renewable energies. Over the past 20 years (from 2000 to 2019), approximately 10,000 articles have been published in the “Agricultural and Biological Sciences” field on this theme, covering all stages of production—from the harvesting of crops to the particular type of energy produced. Articles were obtained from the SCOPUS database and examined with a text mining tool in order to analyze publication trends over the last two decades. Publications per year in the bioenergy theme have grown from 91 in 2000 to 773 in 2019. In particular the analyses showed how environmental aspects have increased their importance (from 7.3% to 11.8%), along with studies related to crop conditions (from 10.4% to 18.6%). Regarding the use of energy produced, growing trends were recognized for the impact of biofuels (mentions moved from 0.14 times per article in 2000 to 0.38 in 2019) and biogases (from 0.14 to 0.42 mentions). Environmental objectives have guided the interest of researchers, encouraging studies on biomass sources and the optimal use of the energy produced. This analysis aims to describe the research evolution, providing an analysis that can be helpful to predict future scenarios and participation among stakeholders in the sector.
Collapse
|
41
|
Agricultural Biogas—An Important Element in the Circular and Low-Carbon Development in Poland. ENERGIES 2020. [DOI: 10.3390/en13071733] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The agricultural sector can play an important role in the transformation of the energy economy in Poland. Special attention in this paper has been paid to the development of the agricultural biogas market in Poland. The considerations mainly concern organizational and economic aspects. Agricultural biogas plant represents the circular cycle of matter and energy. It enables the establishment of low-carbon, resource-efficient links between the agriculture and energy sectors. This is an important element of the circular economy, where waste from agricultural production and the agri-food industry, coming from renewable resources, is transformed into goods with a higher added value. The social and economic needs of the present generation and future generations are considered. The paper presented the characteristics of the Polish market, i.e., the number of entities, the number and location of plants, as well as the production volumes. Analyses were performed in the area of raw materials used to produce agricultural biogas. The analyses were carried out between 2011 and 2018. According to analyses, the potential of the agricultural biogas market in Poland is currently being used to a small extent. It is necessary not only to provide institutional support but also to increase the awareness of farmers and managers in agri-food companies of the possibility of using production waste for energy purposes.
Collapse
|
42
|
The Efficiency of Industrial and Laboratory Anaerobic Digesters of Organic Substrates: The Use of the Biochemical Methane Potential Correction Coefficient. ENERGIES 2020. [DOI: 10.3390/en13051280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study is an elaboration on the conference article written by the same authors, which presented the results of laboratory tests on the biogas efficiency of the following substrates: maize silage (MS), pig manure (PM), potato waste (PW), and sugar beet pulp (SB). This article presents methane yields from the same substrates, but also on a technical scale. Apart from that, it presents an original methodology of defining the Biochemical Methane Potential Correction Coefficient (BMPCC) based on the calculation of biomass conversion on an industrial scale and on a laboratory scale. The BMPCC was introduced as a tool to enable uncomplicated verification of the operation of a biogas plant to increase its efficiency and prevent undesirable losses. The estimated BMPCC values showed that the volume of methane produced in the laboratory was overestimated in comparison to the amount of methane obtained under technical conditions. There were differences observed for each substrate. They ranged from 4.7% to 17.19% for MS, from 1.14% to 23.58% for PM, from 9.5% to 13.69% for PW, and from 9.06% to 14.31% for SB. The BMPCC enables estimation of biomass under fermentation on an industrial scale, as compared with laboratory conditions.
Collapse
|
43
|
What Could China Give to and Take from Other Countries in Terms of the Development of the Biogas Industry? SUSTAINABILITY 2020. [DOI: 10.3390/su12041490] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Anaerobic digestion is one of the most sustainable and promising technologies for the management of organic residues. China plays an important role in the world’s biogas industry and has accumulated rich and valuable experience, both positive and negative. The country has established relatively complete laws, policies and a subsidy system; its world-renowned standard system guarantees the implementation of biogas projects. Its prefabricated biogas industry has been developed, and several biogas-linked agricultural models have been disseminated. Nonetheless, the subsidy system in China’s biogas industry is inflexible and cannot lead to marketization, unlike that of its European counterpart. Moreover, the equipment and technology levels of China’s biogas industry are still lagging and underdeveloped. Mono-digestion, rather than co-digestion, dominates the biogas industry. In addition, biogas upgrading technology is immature, and digestate lacks planning and management. China’s government subsidy is reconsidered in this work, resulting in the recommendation that subsidy should be based on products (i.e., output-oriented) instead of only input subsidy for construction. The policy could focus on the revival of abandoned biogas plants as well.
Collapse
|
44
|
Effect of a Profound Feedstock Change on the Structure and Performance of Biogas Microbiomes. Microorganisms 2020; 8:microorganisms8020169. [PMID: 31991721 PMCID: PMC7074709 DOI: 10.3390/microorganisms8020169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 11/17/2022] Open
Abstract
In this study the response of biogas-producing microbiomes to a profound feedstock change was investigated. The microbiomes were adapted to the digestion of either 100% sugar beet, maize silage, or of the silages with elevated amounts of total ammonium nitrogen (TAN) by adding ammonium carbonate or animal manure. The feedstock exchange resulted in a short-range decrease or increase in the biogas yields according to the level of chemical feedstock complexity. Fifteen taxa were found in all reactors and can be considered as generalists. Thirteen taxa were detected in the reactors operated with low TAN and six in the reactors with high TAN concentration. Taxa assigned to the phylum Bacteroidetes and to the order Spirochaetales increased with the exchange to sugar beet silage, indicating an affinity to easily degradable compounds. The recorded TAN-sensitive taxa (phylum Cloacimonetes) showed no specific affinity to maize or sugar beet silage. The archaeal community remained unchanged. The reported findings showed a smooth adaptation of the microbial communities, without a profound negative impact on the overall biogas production indicating that the two feedstocks, sugar beet and maize silage, potentially do not contain chemical compounds that are difficult to handle during anaerobic digestion.
Collapse
|
45
|
Abunde Neba F, Asiedu NY, Addo A, Morken J, Østerhus SW, Seidu R. Biodigester rapid analysis and design system (B-RADeS): A candidate attainable region-based simulator for the synthesis of biogas reactor structures. Comput Chem Eng 2020. [DOI: 10.1016/j.compchemeng.2019.106607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Genome Analyses and Genome-Centered Metatranscriptomics of Methanothermobacter wolfeii Strain SIV6, Isolated from a Thermophilic Production-Scale Biogas Fermenter. Microorganisms 2019; 8:microorganisms8010013. [PMID: 31861790 PMCID: PMC7022856 DOI: 10.3390/microorganisms8010013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022] Open
Abstract
In the thermophilic biogas-producing microbial community, the genus Methanothermobacter was previously described to be frequently abundant. The aim of this study was to establish and analyze the genome sequence of the archaeal strain Methanothermobacter wolfeii SIV6 originating from a thermophilic industrial-scale biogas fermenter and compare it to related reference genomes. The circular chromosome has a size of 1,686,891 bases, featuring a GC content of 48.89%. Comparative analyses considering three completely sequenced Methanothermobacter strains revealed a core genome of 1494 coding sequences and 16 strain specific genes for M. wolfeii SIV6, which include glycosyltransferases and CRISPR/cas associated genes. Moreover, M. wolfeii SIV6 harbors all genes for the hydrogenotrophic methanogenesis pathway and genome-centered metatranscriptomics indicates the high metabolic activity of this strain, with 25.18% of all transcripts per million (TPM) belong to the hydrogenotrophic methanogenesis pathway and 18.02% of these TPM exclusively belonging to the mcr operon. This operon encodes the different subunits of the enzyme methyl-coenzyme M reductase (EC: 2.8.4.1), which catalyzes the final and rate-limiting step during methanogenesis. Finally, fragment recruitment of metagenomic reads from the thermophilic biogas fermenter on the SIV6 genome showed that the strain is abundant (1.2%) within the indigenous microbial community. Detailed analysis of the archaeal isolate M. wolfeii SIV6 indicates its role and function within the microbial community of the thermophilic biogas fermenter, towards a better understanding of the biogas production process and a microbial-based management of this complex process.
Collapse
|
47
|
Methane Yield Potential of Miscanthus (Miscanthus × giganteus (Greef et Deuter)) Established under Maize (Zea mays L.). ENERGIES 2019. [DOI: 10.3390/en12244680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study reports on the effects of two rhizome-based establishment procedures ‘miscanthus under maize’ (MUM) and ‘reference’ (REF) on the methane yield per hectare (MYH) of miscanthus in a field trial in southwest Germany. The dry matter yield (DMY) of aboveground biomass was determined each year in autumn over four years (2016–2019). A biogas batch experiment and a fiber analysis were conducted using plant samples from 2016–2018. Overall, MUM outperformed REF due to a high MYH of maize in 2016 (7211 m3N CH4 ha−1). The MYH of miscanthus in MUM was significantly lower compared to REF in 2016 and 2017 due to a lower DMY. Earlier maturation of miscanthus in MUM caused higher ash and lignin contents compared with REF. However, the mean substrate-specific methane yield of miscanthus was similar across the treatments (281.2 and 276.2 lN kg−1 volatile solid−1). Non-significant differences in MYH 2018 (1624 and 1957 m3N CH4 ha−1) and in DMY 2019 (15.6 and 21.7 Mg ha−1) between MUM and REF indicate, that MUM recovered from biotic and abiotic stress during 2016. Consequently, MUM could be a promising approach to close the methane yield gap of miscanthus cultivation in the first year of establishment.
Collapse
|
48
|
Koutra E, Kopsahelis A, Maltezou M, Grammatikopoulos G, Kornaros M. Effect of organic carbon and nutrient supplementation on the digestate-grown microalga, Parachlorella kessleri. BIORESOURCE TECHNOLOGY 2019; 294:122232. [PMID: 31610490 DOI: 10.1016/j.biortech.2019.122232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Digested effluents are usually deprived of the appropriate levels of organic carbon or macro- and micro-nutrients to effectively sustain microalgal growth. In this regard, Parachlorella kessleri was cultivated in an agro-waste digestate supplemented with different glucose concentrations, magnesium and trace metals and alternatively with cheese whey (CW), with view to enriching digestate with organic and inorganic constituents and decreasing freshwater demand. Between the conditions tested, CW addition resulted in the highest biomass concentration, 2.68 g L-1 within 18 days of cultivation. Chlorophyll content significantly decreased under 5 g L-1 glucose addition, in contrast to MgSO4 co-addition and CW supplementation. The latter also induced high photosynthetic activity and better-preserved vitality of the photosynthetic apparatus, compared to sole glucose addition. Concerning lipid accumulation, in the presence of high glucose concentration, % of total fatty acids decreased, and the saturated fraction increased over polyunsaturated fatty acids (PUFAs).
Collapse
Affiliation(s)
- Eleni Koutra
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Alexandros Kopsahelis
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Manolia Maltezou
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - George Grammatikopoulos
- Laboratory of Plant Physiology, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece.
| |
Collapse
|
49
|
Achinas S, Euverink GJW. Elevated biogas production from the anaerobic co-digestion of farmhouse waste: Insight into the process performance and kinetics. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2019; 37:1240-1249. [PMID: 31532334 PMCID: PMC6859599 DOI: 10.1177/0734242x19873383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/11/2019] [Indexed: 06/10/2023]
Abstract
The biodegradable portion of solid waste generated in farmhouses can be treated for energy recovery with small portable biogas plants. This action can be done across the Netherlands and all around the planet. This study aims to appraise the performance of anaerobic digestion of different wastes (cow manure, food waste and garden waste) obtained from a regional farmhouse. Batch reactors were established under mesophilic conditions in order to investigate the impact of ternary mixtures on the anaerobic digestion process performance. Different mixing ratios were set in the batch tests. The upshots from the experiments connoted that ternary digestion with cow manure:food waste:garden waste mixing ratio of 40:50:10 yielded higher biogas amount. The kinetics' results showed quite good congruence with the experimental study. The results from the kinetic analysis appeared to be in line with the experimental one.
Collapse
Affiliation(s)
- Spyridon Achinas
- Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | | |
Collapse
|
50
|
Energy and Nutrients’ Recovery in Anaerobic Digestion of Agricultural Biomass: An Italian Perspective for Future Applications. ENERGIES 2019. [DOI: 10.3390/en12173287] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Anaerobic digestion (AD) is the most adopted biotechnology for the valorization of agricultural biomass into valuable products like biogas and digestate, a renewable fertilizer. This paper illustrates in the first part the actual situation of the anaerobic digestion sector in Italy, including the number of plants, their geographical distribution, the installed power and the typical feedstock used. In the second part, a future perspective, independent of the actual incentive scheme, is presented. It emerged that Italy is the second European country for the number of anaerobic digestion plants with more than 1500 units for a total electricity production of about 1400 MWel. More than 60% of them are in the range of 200 kW–1 MW installed power. Almost 70% of the plants are located in the northern part of the Country where intensive agriculture and husbandry are applied. Most of the plants are now using energy crops in the feedstock. The future perspectives of the biogas sector in Italy will necessarily consider a shift from power generation to biomethane production, and an enlargement of the portfolio of possible feedstocks, the recovery of nutrients from digestate in a concentrated form, and the expansion of the AD sector to southern regions. Power to gas and biobased products will complete the future scenario.
Collapse
|