1
|
Chandran NK, Sultan MTH, Łukaszewicz A, Shahar FS, Holovatyy A, Giernacki W. Review on Type of Sensors and Detection Method of Anti-Collision System of Unmanned Aerial Vehicle. SENSORS (BASEL, SWITZERLAND) 2023; 23:6810. [PMID: 37571593 PMCID: PMC10422601 DOI: 10.3390/s23156810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Unmanned aerial vehicle (UAV) usage is increasing drastically worldwide as UAVs are used in various industries for many applications, such as inspection, logistics, agriculture, and many more. This is because performing a task using UAV makes the job more efficient and reduces the workload needed. However, for a UAV to be operated manually or autonomously, the UAV must be equipped with proper safety features. An anti-collision system is one of the most crucial and fundamental safety features that UAVs must be equipped with. The anti-collision system allows the UAV to maintain a safe distance from any obstacles. The anti-collision technologies are of crucial relevance to assure the survival and safety of UAVs. Anti-collision of UAVs can be varied in the aspect of sensor usage and the system's working principle. This article provides a comprehensive overview of anti-collision technologies for UAVs. It also presents drone safety laws and regulations that prevent a collision at the policy level. The process of anti-collision technologies is studied from three aspects: Obstacle detection, collision prediction, and collision avoidance. A detailed overview and comparison of the methods of each element and an analysis of their advantages and disadvantages have been provided. In addition, the future trends of UAV anti-collision technologies from the viewpoint of fast obstacle detection and wireless networking are presented.
Collapse
Affiliation(s)
- Navaneetha Krishna Chandran
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), University Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia;
| | - Mohammed Thariq Hameed Sultan
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), University Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia;
- Department of Aerospace Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia;
- Aerospace Malaysia Innovation Centre (944751-A), Prime Minister’s Department, MIGHT Partnership Hub, Jalan Impact, Cyberjaya 63000, Selangor Darul Ehsan, Malaysia
| | - Andrzej Łukaszewicz
- Institute of Mechanical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Farah Syazwani Shahar
- Department of Aerospace Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia;
| | - Andriy Holovatyy
- Department of Computer-Aided Design Systems, Lviv Polytechnic National University, 79013 Lviv, Ukraine;
| | - Wojciech Giernacki
- Institute of Robotics and Machine Intelligence, Faculty of Control, Robotics and Electrical Engineering, Poznan University of Technology, 60-965 Poznan, Poland;
| |
Collapse
|
2
|
Path Planning and Real-Time Collision Avoidance Based on the Essential Visibility Graph. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10165613] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper deals with a novel procedure to generate optimum flight paths for multiple unmanned aircraft in the presence of obstacles and/or no-fly zones. A real-time collision avoidance algorithm solving the optimization problem as a minimum cost piecewise linear path search within the so-called Essential Visibility Graph (EVG) is first developed. Then, a re-planning procedure updating the EVG over a selected prediction time interval is proposed, accounting for the presence of multiple flying vehicles or movable obstacles. The use of Dubins curves allows obtaining smooth paths, compliant with flight mechanics constraints. In view of possible future applications in hybrid scenarios where both manned and unmanned aircraft share the airspace, visual flight rules compliant with International Civil Aviation Organization (ICAO) Annex II Right of Way were implemented. An extensive campaign of numerical simulations was carried out to test the effectiveness of the proposed technique by setting different operational scenarios of increasing complexity. Results show that the algorithm is always able to identify trajectories compliant with ICAO rules for avoiding collisions and assuring a minimum safety distance as well. Furthermore, the low computational burden suggests that the proposed procedure can be considered a promising approach for real-time applications.
Collapse
|
3
|
Cooperative Path Planning for Aerial Recovery of a UAV Swarm Using Genetic Algorithm and Homotopic Approach. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To maximize the advantages of being low-cost, highly mobile, and having a high flexibility, aerial recovery technology is important for unmanned aerial vehicle (UAV) swarms. In particular, the operation mode of “launch-recovery-relaunch” will greatly improve the efficiency of a UAV swarm. However, it is difficult to realize large-scale aerial recovery of UAV swarms because this process involves complex multi-UAV recovery scheduling, path planning, rendezvous, and acquisition problems. In this study, the recovery problem of a UAV swarm by a mother aircraft has been investigated. To solve the problem, a recovery planning framework is proposed to establish the coupling mechanism between the scheduling and path planning of a multi-UAV aerial recovery. A genetic algorithm is employed to realize efficient and precise scheduling. A homotopic path planning approach is proposed to cover the paths with an expected length for long-range aerial recovery missions. Simulations in representative scenarios validate the effectiveness of the recovery planning framework and the proposed methods. It can be concluded that the recovery planning framework can achieve a high performance in dealing with the aerial recovery problem.
Collapse
|
4
|
Abstract
SUMMARYIn this paper, a robust geometric navigation algorithm, designed on the special Euclidean group SE(3), of a quadrotor is proposed. The equations of motion for the quadrotor are obtained using the Newton–Euler formulation. The geometric navigation considers a guidance frame which is designed to perform autonomous flights with a convergence to the contour of the task with small normal velocity. For this purpose, a super twisting algorithm controls the nonlinear rotational and translational dynamics as a cascade structure in order to establish the fast and yet smooth tracking with the typical robustness of sliding modes. In this sense, the controller provides robustness against parameter uncertainty, disturbances, convergence to the sliding manifold in finite time, and asymptotic convergence of the trajectory tracking. The algorithm validation is presented through experimental results showing the feasibility of the proposed approach and illustrating that the tracking errors converge asymptotically to the origin.
Collapse
|
5
|
A Multi-Switching Tracking Control Scheme for Autonomous Mobile Robot in Unknown Obstacle Environments. ELECTRONICS 2019. [DOI: 10.3390/electronics9010042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The obstacle avoidance control of mobile robots has been widely investigated for numerous practical applications. In this study, a control scheme is presented to deal with the problem of trajectory tracking while considering obstacle avoidance. The control scheme is simplified into two controllers. First, an existing trajectory tracking controller is used to track. Next, to avoid the possible obstacles in the environment, an obstacle avoidance controller, which is used to determine the fastest collision avoidance direction to follow the boundary of the obstacle at a constant distance, is proposed based on vector relationships between the robot and an obstacle. Two controllers combined via a switch strategy are switched to perform the task of trajectory tracking or obstacle avoidance. The stability of each controller in the control scheme is guaranteed by a Lyapunov function. Finally, several simulations are conducted to evaluate the proposed control scheme. The simulation results indicate that the proposed scheme can be applied to the mobile robot to ensure its safe movement in unknown obstacle environments.
Collapse
|
6
|
Robust Dynamic Sliding Mode Control-Based PID–Super Twisting Algorithm and Disturbance Observer for Second-Order Nonlinear Systems: Application to UAVs. ELECTRONICS 2019. [DOI: 10.3390/electronics8070760] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper introduces a robust dynamic sliding mode control algorithm using a nonlinear disturbance observer for system dynamics. The proposed method is applied to provide a rapid adaptation and strictly robust performance for the attitude and altitude control of unmanned aerial vehicles (UAVs). The procedure of the proposed method consists of two stages. First, a nonlinear disturbance observer is applied to estimate the exogenous perturbation. Second, a robust dynamic sliding mode controller integrated with the estimated values of disturbances is presented by a combination of a proportional–integral–derivative (PID) sliding surface and super twisting technique to compensate for the effect of these perturbations on the system. In addition, the stability of a control system is established by Lyapunov theory. A numerical simulation was performed and compared to recently alternative methods. An excellent tracking performance and superior stability of the attitude and altitude control of UAVs, exhibiting a fast response, good adaptation, and no chattering effect in the simulation results proved the robustness and effectiveness of the proposed method.
Collapse
|