1
|
Senusi W, Ahmad MI, Binhweel F, Shalfoh E, Alsaedi S, Shakir MA. Biodiesel production and characteristics from waste frying oils: sources, challenges, and circular economic perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33239-33258. [PMID: 38696017 DOI: 10.1007/s11356-024-33533-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/27/2024] [Indexed: 05/31/2024]
Abstract
Biodiesel serves as a viable alternative to traditional diesel due to its non-toxicity, biodegradability, and lower environmental footprint. Among the diverse edible and inedible feedstocks, waste frying oil emerges as a promising and affordable feedstock for biodiesel production. Commonly waste frying oils include those derived from palm, corn, sunflower, soybean, rapeseed, and canola. The primary challenge related to biodiesel production technologies is the high production cost, which poses a significant barrier to its widespread adoption. Thus, refining the production techniques is essential to enhance yield, reduce capital expenditure, and curtail raw material expenses. An examination of the research focusing on feedstock availability, production, hurdles, operational expenditures, and future potential is pivotal for identifying the most economically and technically viable solutions. This paper critically reviews such research by exploring feedstock availability, production techniques, challenges, and costs intrinsic to biodiesel synthesis. It also underscores the economic feasibility of biodiesel production, shedding light on the pivotal factors that influence profitability, especially when leveraging waste frying oils. Through an in-depth understanding of these considerations, optimal production and feedstock choices for biodiesel production can be identified. Addressing cost and production bottlenecks could potentially enhance the economic viability of waste frying oil-based biodiesel, thus fostering both environmental sustainability and more extensive adoption of biodiesel as an environmental-friendly fuel in the future.
Collapse
Affiliation(s)
- Wardah Senusi
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Mardiana Idayu Ahmad
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia.
- Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| | - Fozy Binhweel
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Ehsan Shalfoh
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Sami Alsaedi
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Mohammad Aliff Shakir
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| |
Collapse
|
2
|
Prediction of Oxidation Stability of Biodiesel Derived from Waste and Refined Vegetable Oils by Statistical Approaches. ENERGIES 2022. [DOI: 10.3390/en15020407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The oxidation stability (OX) of the biodiesel is an essential parameter mainly during storage, which reduces the quality of the biodiesel, thus affecting the engine performance. Moreover, many factors affect oxidation stability. Therefore, determining the most significant parameter is essential for achieving accurate predictions. In this paper, an empirical equation (Poisson Regression Model (PRM)), machine learning models (Multilayer Feed-Forward Neural Network (MFFNN), Cascade Feed-forward Neural Network (CFNN), Radial Basis Neural Network (RBFNN), and Elman neural network (ENN)) with various combinations of input parameters are utilized and employed to identify the most relevant parameters for prediction of the oxidation stability of biodiesel. This study measured the physicochemical properties of 39 samples of waste frying methyl ester and their blends with various percentages of palm biodiesel and refined canola biodiesel. To this aim, 14 parameters including concentration amount of WFME (X1), PME (X2), and RCME (X3) in the mixture, kinematic viscosity (KV) at 40 °C, density at 15 °C (D), cloud point (CP), pour point (PP), the estimation value of the sum of the saturated (∑SFAMs), monounsaturated (∑MUFAMs), polyunsaturated (∑PUFAMs), degree of unsaturation (DU), long-chain saturated factor (LCSF), very-long-chain fatty acid (VLCFA), and ratio (∑MUFAMs+∑PUFAMs∑SFAMs) fatty acid composition were considered. The results demonstrated that the RBFNN model with the combination of X1, X2, X3, ∑SFAMs, ∑MUFAMs, ∑PUFAMs. VLCFA, DU, LCSF, ∑MUFAMs+∑PUFAMs∑SFAMs, KV, and D has the lowest value of root mean squared error and mean absolute error. In the end, the results demonstrated that the RBFNN model performed well and presented high accuracy in estimating the value of OX for the biodiesel samples compared to PRM, MFFNN, CFNN, and ENN.
Collapse
|
3
|
Effect of Storage Time on the Physicochemical Properties of Waste Fish Oils and Used Cooking Vegetable Oils. ENERGIES 2020. [DOI: 10.3390/en14010101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Waste fish oils (FOs) and used cooking vegetable oils (UCOs) are increasingly becoming alternative renewable fuels. However, different physicochemical aspects of these renewable fuels, including the effect of storage, are not well-known. In this work, the effect of the storage period on physicochemical properties of selected samples of FOs and UCOs was investigated. The bio-oils were stored at 4 °C for up to five years before each experimentation. The chemical properties were characterized using capillary gas chromatography with flame ionization detection (GC-FID) and high-performance size exclusion chromatography including an evaporative light scattering detector (HPSEC-ELSD). Water contents and acid numbers of the bio-oils were determined using the Karl Fischer (KF) titration and the ASTM D 664 methods. Furthermore, the average heating values and surface tension of the bio-oils were determined. According to the results obtained, for all bio-oil types, the concentrations of polymerized triglycerides, diglycerides, and fatty acids and monoglycerides had increased during the storage periods. The physical properties of the bio-oils also showed a small variation as a function of the storage period. The overall results observed indicate that the deterioration of the physicochemical properties of bio-oils can be controlled through storage in dark, dry, and cold conditions.
Collapse
|
4
|
Biodiesel Production from Four Residential Waste Frying Oils: Proposing Blends for Improving the Physicochemical Properties of Methyl Biodiesel. ENERGIES 2020. [DOI: 10.3390/en13164111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The physicochemical properties of biodiesel fuels and their blends prepared from four residential waste vegetable frying oils (sunflower (FSME), canola (FCME), mixture of sunflower and rapeseed (FSRME) and corn (FSCME)) were evaluated and measured to determine the best blend. The results indicate that the stability of 10 biodiesel blends was above 10 h for 0-month, meeting the stability requirement regulated in EN 14214:2014 by adding FSCME, which depends on the concentration amount of FSCME. Besides, the results showed that all fuel samples did not meet the requirements of diesel fuel standards. Therefore, automobile gasoline is used as an additive to unmixed biodiesel in various concentrations to reduce the kinematic viscosity, density and cold flow properties. The results indicate that BG85 and BG80 have met the mixed pure biodiesel with gasoline fulfilled diesel fuel quality standard. Therefore, the samples with stability above 10 h were mixed with gasoline in 15% and 20% to reduce the cold flow properties and meet the specifications of the diesel fuel standards. Moreover, the effect of long-term storage on the properties of all samples was investigated under different storage conditions. The results indicate that higher storage temperatures and longer storage periods negatively influenced the properties of the fuel samples.
Collapse
|
5
|
Biodiesel production from palm olein: A sustainable bioresource for Nigeria. Heliyon 2020; 6:e03725. [PMID: 32322719 PMCID: PMC7160580 DOI: 10.1016/j.heliyon.2020.e03725] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/14/2020] [Accepted: 03/30/2020] [Indexed: 11/22/2022] Open
Abstract
Dangerous environmental consequences and market unpredictability of fossil fuels have necessitated the need for sustainable large-scale production of biofuel in Nigeria. Unrefined palm oil (UPO) is a significant product of commercially available oil palm plants in the country. This study experimentally investigates the production of biodiesel from refined, bleached and deodorised (RBD) palm olein extracted from UPO obtained from batch reactors. The transesterification process of the RBD palm olein with methanol and in the presence of potassium hydroxide (KOH) catalyst produced biodiesel with a 62.5% yield, thus confirming its feasibility for mass production. The derived biodiesel has properties equivalent to ASTM D792 standard for biodiesel fuels.
Collapse
|