1
|
Towards a Predictive Simulation of Turbulent Combustion?—An Assessment for Large Internal Combustion Engines. ENERGIES 2020. [DOI: 10.3390/en14010043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Frequently the question arises in what sense numerical simulation can be considered predictive if prior model tuning with test results is necessary. In this paper a summary of the present Computational Fluid Dynamics (CFD) simulation methods for in-cylinder modelling is presented with a focus on combustion processes relevant for large engines. The current discussion about the sustainability of internal combustion engines will have a strong impact on applying advanced CFD methods in industrial processes. It is therefore included in the assessment. Simplifications and assumptions of turbulence, spray, and combustion models, as well as uncertainties of model boundary conditions, are discussed and the future potential of an advanced approach like Large Eddy Simulation (LES) is evaluated. It follows that a high amount of expertise and a careful evaluation of the numerical results will remain necessary in the future to apply the best-suited models for a given combustion process. New chemical mechanisms will have to be developed in order to represent prospective fuels like hydrogen or OME. Multi-injection or dual fuel combustion will further pose high requirements to the numerical methods. Therefore, the further development and validation of advanced mixture, combustion and emission models will remain important. Close cooperation between academia, code suppliers and engine manufacturers could promote the necessary progress.
Collapse
|
2
|
Dual Fuel Reaction Mechanism 2.0 including NOx Formation and Laminar Flame Speed Calculations Using Methane/Propane/n-Heptane Fuel Blends. ENERGIES 2020. [DOI: 10.3390/en13040778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study presents the further development of the TU Wien dual fuel mechanism, which was optimized for simulating ignition and combustion in a rapid compression expansion machine (RCEM) in dual fuel mode using diesel and natural gas at pressures higher than 60 bar at the start of injection. The mechanism is based on the Complete San Diego mechanism with n-heptane extension and was attuned to the RCEM measurements to achieve high agreement between experiments and simulation. This resulted in a specific application area. To obtain a mechanism for a wider parameter range, the Arrhenius parameter changes performed were analyzed and updated. Furthermore, the San Diego nitrogen sub-mechanism was added to consider NOx formation. The ignition delay time-reducing effect of propane addition to methane was closely examined and improved. To investigate the propagation of the flame front, the laminar flame speed of methane–air mixtures was simulated and compared with measured values from literature. Deviations at stoichiometric and fuel-rich conditions were found and by further mechanism optimization reduced significantly. To be able to justify the parameter changes performed, the resulting reaction rate coefficients were compared with data from the National Institute of Standards and Technology chemical kinetics database.
Collapse
|