1
|
Kumar G, Lin CC, Kuo HC, Chen FC. Enhancing photoluminescence performance of perovskite quantum dots with plasmonic nanoparticles: insights into mechanisms and light-emitting applications. NANOSCALE ADVANCES 2024; 6:782-791. [PMID: 38298599 PMCID: PMC10825943 DOI: 10.1039/d3na01078c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024]
Abstract
Perovskite quantum dots (QDs) are considered as promising materials for numerous optoelectronic applications due to their narrow emission spectra, high color purity, high photoluminescence quantum yields (PLQYs), and cost-effectiveness. Herein, we synthesized various types of perovskite QDs and incorporated Au nanoparticles (NPs) to systematically investigate the impact of plasmonic effects on the photoluminescence performance of perovskite QDs. The PLQYs of the QDs are enhanced effectively upon the inclusion of Au NPs in the solutions, with an impressive PLQY approaching 99% achieved. The PL measurements reveal that the primary mechanism behind the PL improvement is the accelerated rate of radiative recombination. Furthermore, we integrate perovskite QDs and Au NPs, which function as color conversion layers, with blue light-emitting diodes (LEDs), achieving a remarkable efficiency of 140.6 lm W-1. Additionally, we prepare photopatternable thin films of perovskite QDs using photocrosslinkable polymers as the matrix. Microscale patterning of the thin films is accomplished, indicating that the addition of plasmonic NPs does not adversely affect their photopatternable properties. Overall, our research not only elucidates the underlying mechanisms of plasmonic effects on perovskite QDs but presents a practical method for enhancing their optical performance, paving the way for next-generation optoelectronic applications, including high-definition micro-LED panels.
Collapse
Affiliation(s)
- Gautham Kumar
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan
| | - Chien-Chung Lin
- Graduate Institute of Photonics and Optoelectronics, Department of Electrical Engineering, National Taiwan University Taipei 10617 Taiwan
| | - Hao-Chung Kuo
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan
| | - Fang-Chung Chen
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan
| |
Collapse
|
2
|
Gollino L, Mercier N, Pauporté T. Exploring Solar Cells Based on Lead- and Iodide-Deficient Halide Perovskite (d-HP) Thin Films. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1245. [PMID: 37049339 PMCID: PMC10096836 DOI: 10.3390/nano13071245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Perovskite solar cells have become more and more attractive and competitive. However, their toxicity induced by the presence of lead and their rather low stability hinders their potential and future commercialization. Reducing lead content while improving stability then appears as a major axis of development. In the last years, we have reported a new family of perovskite presenting PbI+ unit vacancies inside the lattice caused by the insertion of big organic cations that do not respect the Goldschmidt tolerance factor: hydroxyethylammonium HO-(CH2)2-NH3+ (HEA+) and thioethylammonium HS-(CH2)2-NH3+ (TEA+). These perovskites, named d-HPs for lead and halide-deficient perovskites, present a 3D perovskite corner-shared Pb1-xI3-x network that can be assimilated to a lead-iodide-deficient MAPbI3 or FAPbI3 network. Here, we propose the chemical engineering of both systems for solar cell optimization. For d-MAPbI3-HEA, the power conversion efficiency (PCE) reached 11.47% while displaying enhanced stability and reduced lead content of 13% compared to MAPbI3. On the other hand, d-FAPbI3-TEA delivered a PCE of 8.33% with astounding perovskite film stability compared to classic α-FAPI. The presence of TEA+ within the lattice impedes α-FAPI degradation into yellow δ-FAPbI3 by direct degradation into inactive Pb(OH)I, thus dramatically slowing the aging of d-FAPbI3-TEA perovskite.
Collapse
Affiliation(s)
- Liam Gollino
- Institut de Recherche de Chimie-Paris (IRCP), UMR8247, CNRS, Chimie-ParisTech, PSL Université, 11 rue Pierre et Marie Curie, CEDEX 5, 75231 Paris, France
| | - Nicolas Mercier
- MOLTECH-Anjou, UMR 6200, University of Angers, 2 boulevard de Lavoisier, 49045 Angers, France
| | - Thierry Pauporté
- Institut de Recherche de Chimie-Paris (IRCP), UMR8247, CNRS, Chimie-ParisTech, PSL Université, 11 rue Pierre et Marie Curie, CEDEX 5, 75231 Paris, France
| |
Collapse
|
3
|
Hun CM, Chen LC. Properties and alcohol sensing applications of quasi-2D (PEA) 2(MA) 3Sb 2Br 9 thin films. NANOSCALE RESEARCH LETTERS 2023; 18:19. [PMID: 36808580 DOI: 10.1186/s11671-023-03806-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/16/2023] [Indexed: 05/24/2023]
Abstract
We fabricated an alcohol detector based on (PEA)2(CH3NH3)3Sb2Br9 ((PEA)2MA3Sb2Br9) lead-free perovskite-like films. The XRD pattern revealed that the (PEA)2MA3Sb2Br9 lead-free perovskite-like films exhibited a quasi-2D structure. The optimal current response ratios are 74 and 84 for 5 and 15% alcohol solutions, respectively. When the amount of PEABr decreases in the films, the conductivity of the sample in ambient alcohol with a high alcohol concentration solution increases. The alcohol was dissolved into water and carbon dioxide due to the catalyst effect of the quasi-2D (PEA)2MA3Sb2Br9 thin film. The rise and fall times for the alcohol detector were 1.85 and 0.7 s, respectively, indicating that the detector was suitable.
Collapse
Affiliation(s)
- Chien-Min Hun
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Lung-Chien Chen
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan.
| |
Collapse
|
4
|
Zhang CC, Yuan S, Lou YH, Okada H, Wang ZK. Physical Fields Manipulation for High-Performance Perovskite Photovoltaics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107556. [PMID: 35043565 DOI: 10.1002/smll.202107556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 06/14/2023]
Abstract
With the efforts of researchers from all over the world, metal halide perovskite solar cells (PSCs) have been booming rapidly in recent years. Generally, perovskite films are sensitive to surrounding conditions and will be changed under the action of physical fields, resulting in lattice distortion, degradation, ion migration, and so on. In this review, the progress of physical fields manipulation in PSCs, including the electric field, magnetic field, light field, stress field, and thermal field are reviewed. On this basis, the influences of these fields on PSCs are summarized and prospected. Finally, challenges and prospective research directions on how to make better use of external-fields while minimizing the unnecessary and disruptive impacts on commercial PSCs with high-efficiency and steady output are proposed.
Collapse
Affiliation(s)
- Cong-Cong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
- Graduate School of Science & Engineering, University of Toyama, Toyama, 930-8555, Japan
| | - Shuai Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yan-Hui Lou
- School of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China
| | - Hiroyuki Okada
- Graduate School of Science & Engineering, University of Toyama, Toyama, 930-8555, Japan
| | - Zhao-Kui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
5
|
Ali A, El-Mellouhi F, Mitra A, Aïssa B. Research Progress of Plasmonic Nanostructure-Enhanced Photovoltaic Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:788. [PMID: 35269276 PMCID: PMC8912550 DOI: 10.3390/nano12050788] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/02/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023]
Abstract
Enhancement of the electromagnetic properties of metallic nanostructures constitute an extensive research field related to plasmonics. The latter term is derived from plasmons, which are quanta corresponding to longitudinal waves that are propagating in matter by the collective motion of electrons. Plasmonics are increasingly finding wide application in sensing, microscopy, optical communications, biophotonics, and light trapping enhancement for solar energy conversion. Although the plasmonics field has relatively a short history of development, it has led to substantial advancement in enhancing the absorption of the solar spectrum and charge carrier separation efficiency. Recently, huge developments have been made in understanding the basic parameters and mechanisms governing the application of plasmonics, including the effects of nanoparticles' size, arrangement, and geometry and how all these factors impact the dielectric field in the surrounding medium of the plasmons. This review article emphasizes recent developments, fundamentals, and fabrication techniques for plasmonic nanostructures while investigating their thermal effects and detailing light-trapping enhancement mechanisms. The mismatch effect of the front and back light grating for optimum light trapping is also discussed. Different arrangements of plasmonic nanostructures in photovoltaics for efficiency enhancement, plasmonics' limitations, and modeling performance are also deeply explored.
Collapse
Affiliation(s)
- Adnan Ali
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 34110, Qatar; (A.A.); (F.E.-M.)
| | - Fedwa El-Mellouhi
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 34110, Qatar; (A.A.); (F.E.-M.)
| | - Anirban Mitra
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, India;
| | - Brahim Aïssa
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 34110, Qatar; (A.A.); (F.E.-M.)
| |
Collapse
|
6
|
Ali Shah SA, Sayyad MH, Sun J, Guo Z. Recent advances and emerging trends of rare-earth-ion doped spectral conversion nanomaterials in perovskite solar cells. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2021.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Oxide and Organic–Inorganic Halide Perovskites with Plasmonics for Optoelectronic and Energy Applications: A Contributive Review. Catalysts 2021. [DOI: 10.3390/catal11091057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The ascension of halide perovskites as outstanding materials for a wide variety of optoelectronic applications has been reported in recent years. They have shown significant potential for the next generation of photovoltaics in particular, with a power conversion efficiency of 25.6% already achieved. On the other hand, oxide perovskites have a longer history and are considered as key elements in many technological applications; they have been examined in depth and applied in various fields, owing to their exceptional variability in terms of compositions and structures, leading to a large set of unique physical and chemical properties. As of today, a sound correlation between these two important material families is still missing, and this contributive review aims to fill this gap. We report a detailed analysis of the main functions and properties of oxide and organic–inorganic halide perovskite, emphasizing existing relationships amongst the specific performance and the structures.
Collapse
|
8
|
The Effects of Temperature on the Growth of a Lead-Free Perovskite-Like (CH 3NH 3) 3Sb 2Br 9 Single Crystal for An MSM Photodetector Application. SENSORS 2021; 21:s21134475. [PMID: 34208881 PMCID: PMC8271485 DOI: 10.3390/s21134475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022]
Abstract
We have fabricated a photodetector based on (CH3NH3)3Sb2Br9 (MA3Sb2Br9) lead-free perovskite-like single crystal, which plays an important role in the optoelectronic characteristics of the photodetector as a perovskite-like photosensitive layer. Here, MA3Sb2Br9 single crystals were synthesized by an inverse temperature crystallization process with a precursor solution at three different growth temperatures, 60 °C, 80 °C, and 100 °C. As a result, a MA3Sb2Br9 single crystal with an optimum growth temperature of 60 °C presented a low trap density of 2.63 × 1011 cm-3, a high charge carrier mobility of 0.75 cm2 V-1 s-1, and excellent crystal structure and optical absorption properties. This MA3Sb2Br9 perovskite-like photodetector displayed a low dark current of 8.09 × 10-9 A, high responsivity of 0.113 A W-1, and high detectivity of 4.32 × 1011 Jones.
Collapse
|
9
|
Shen T, Tan Q, Dai Z, Padture NP, Pacifici D. Arrays of Plasmonic Nanostructures for Absorption Enhancement in Perovskite Thin Films. NANOMATERIALS 2020; 10:nano10071342. [PMID: 32660111 PMCID: PMC7408564 DOI: 10.3390/nano10071342] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 11/16/2022]
Abstract
We report optical characterization and theoretical simulation of plasmon enhanced methylammonium lead iodide (MAPbI 3 ) thin-film perovskite solar cells. Specifically, various nanohole (NH) and nanodisk (ND) arrays are fabricated on gold/MAPbI 3 interfaces. Significant absorption enhancement is observed experimentally in 75 nm and 110 nm-thick perovskite films. As a result of increased light scattering by plasmonic concentrators, the original Fabry-Pérot thin-film cavity effects are suppressed in specific structures. However, thanks to field enhancement caused by plasmonic resonances and in-plane interference of propagating surface plasmon polaritons, the calculated overall power conversion efficiency (PCE) of the solar cell is expected to increase by up to 45.5%, compared to its flat counterpart. The role of different geometry parameters of the nanostructure arrays is further investigated using three dimensional (3D) finite-difference time-domain (FDTD) simulations, which makes it possible to identify the physical origin of the absorption enhancement as a function of wavelength and design parameters. These findings demonstrate the potential of plasmonic nanostructures in further enhancing the performance of photovoltaic devices based on thin-film perovskites.
Collapse
|