1
|
Ni L, Xu G, Li C, Cui G. Electrolyte formulation strategies for potassium-based batteries. EXPLORATION (BEIJING, CHINA) 2022; 2:20210239. [PMID: 37323885 PMCID: PMC10191034 DOI: 10.1002/exp.20210239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/22/2021] [Indexed: 06/17/2023]
Abstract
Potassium (K)-based batteries are viewed as the most promising alternatives to lithium-based batteries, owing to their abundant potassium resource, lower redox potentials (-2.97 V vs. SHE), and low cost. Recently, significant achievements on electrode materials have boosted the development of potassium-based batteries. However, the poor interfacial compatibility between electrode and electrolyte hinders their practical. Hence, rational design of electrolyte/electrode interface by electrolytes is the key to develop K-based batteries. In this review, the principles for formulating organic electrolytes are comprehensively summarized. Then, recent progress of various liquid organic and solid-state K+ electrolytes for potassium-ion batteries and beyond are discussed. Finally, we offer the current challenges that need to be addressed for advanced K-based batteries.
Collapse
Affiliation(s)
- Ling Ni
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdaoChina
| | - Gaojie Xu
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdaoChina
| | - Chuanchuan Li
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdaoChina
| | - Guanglei Cui
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdaoChina
| |
Collapse
|
2
|
Zhang Y, Zhu H, Freschi DJ, Liu J. High-Performance Potassium-Tellurium Batteries Stabilized by Interface Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200085. [PMID: 35225427 DOI: 10.1002/smll.202200085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/29/2022] [Indexed: 06/14/2023]
Abstract
The emerging potassium-tellurium (K-Te) battery system is expected to realize fast reaction kinetics and excellent rate performance due to the exceptional electrical conductivity of Te. However, there has been a lack of fundamental knowledge about this new K-Te system, including the reaction mechanism and cathode structure design. Herein, a two-step reaction pathway from Te to K2 Te3 and ultimately to K5 Te3 is investigated in carbonate electrolyte-based K-Te batteries by X-ray diffraction, high-resolution transmission electron microscopy, and selected area electron diffraction characterizations. Additionally, the atomic layer deposition technique is adopted to deposit an ultrathin aluminum oxide (Al2 O3 ) film on the electrode surface, which induces the generation of a stable solid electrolyte interphase layer and reduces the loss of active materials effectively. Consequently, the rationally fabricated Te/porous carbon cathode with functional Al2 O3 coating delivers remarkable long-term cycling stability over 500 cycles at 1 C with an ultralow capacity decay of only 0.01% per cycle. This interface engineering strategy is validated to stabilize the electrode surface, enhance the structural integrity and ensure reliable electron transfer and K-ion conduction over repeated potassiation/depotassiation cycles. These findings are expected to promote the development of high-energy-density K-S/Se/Te batteries.
Collapse
Affiliation(s)
- Yue Zhang
- School of Engineering, Faculty of Applied Science, The University of British Columbia, 3333 University Way, Kelowna, BC, V1V 1V7, Canada
| | - Hongzheng Zhu
- School of Engineering, Faculty of Applied Science, The University of British Columbia, 3333 University Way, Kelowna, BC, V1V 1V7, Canada
| | - Donald J Freschi
- Fenix Advanced Materials, 2950 Highway Drive, Trail, BC, V1R 2T3, Canada
| | - Jian Liu
- School of Engineering, Faculty of Applied Science, The University of British Columbia, 3333 University Way, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
3
|
Ding Y, Cai J, Sun Y, Shi Z, Yi Y, Liu B, Sun J. Bimetallic Selenide Decorated Nanoreactor Synergizing Confinement and Electrocatalysis of Se Species for 3D-Printed High-Loading K-Se Batteries. ACS NANO 2022; 16:3373-3382. [PMID: 35112840 DOI: 10.1021/acsnano.2c00256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The potassium-selenium (K-Se) battery has been considered an appealing candidate for next-generation energy storage systems owing to the high energy and low cost. Nonetheless, its development is plagued by the tremendous volume expansion and sluggish reaction kinetics of the Se cathode. Moreover, implementing favorable areal capacity and longevous cycling of a high-loading K-Se battery remains a daunting challenge facing commercial applications. Herein, we devise a Se and CoNiSe2 coembedded nanoreactor (Se/CoNiSe2-NR) affording low carbon content as an advanced cathode for K-Se batteries. We systematically uncover the enhanced K2Se2/K2Se adsorption and promoted K+ diffusion behavior with the incorporation of Co throughout theoretical simulation and electrokinetic analysis. As a result, Se/CoNiSe2-NR harvests high cycling stability with a capacity decay rate of 0.038% per cycle over 950 cycles at 1.0 C. More encouragingly, equipped with a 3D-printed Se/CoNiSe2-NR electrode with tunable Se loadings, K-Se full batteries enable steady cycling at an elevated Se loading of 3.8 mg cm-2. Our endeavor ameliorates the capacity and lifetime performance of the emerging K-Se device, thereby offering a meaningful tactic in pursuing its practical application.
Collapse
Affiliation(s)
- Yifan Ding
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, People's Republic of China
| | - Jingsheng Cai
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, People's Republic of China
| | - Yingjie Sun
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China
| | - Zixiong Shi
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, People's Republic of China
| | - Yuyang Yi
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, People's Republic of China
| | - Bingzhi Liu
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, People's Republic of China
| | - Jingyu Sun
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, People's Republic of China
| |
Collapse
|
4
|
Cathode host engineering for non-lithium (Na, K and Mg) sulfur/selenium batteries: A state-of-the-art review. NANO MATERIALS SCIENCE 2022. [DOI: 10.1016/j.nanoms.2022.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
Vijaya Kumar Saroja AP, Li B, Xu Y. Hybrid nanostructures for electrochemical potassium storage. NANOSCALE ADVANCES 2021; 3:5442-5464. [PMID: 36133268 PMCID: PMC9417568 DOI: 10.1039/d1na00404b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/05/2021] [Indexed: 06/16/2023]
Abstract
The wide availability and low cost of potassium resources have made electrochemical potassium storage a promising energy storage solution for sustainable decarbonisation. Research activities have been rapidly increasing in the last few years to investigate various potassium batteries such as K-ion batteries (KIBs), K-S batteries and K-Se batteries. The electrode materials of these battery technologies are being extensively studied to examine their suitability and performance, and the utilisation of hybrid nanostructures has undoubtedly contributed to the advancement of the performance. This review presents a timely summary of utilising hybrid nanostructures as battery electrodes to address the issues currently existing in potassium batteries via taking advantage of the compositional and structural diversity of hybrid nanostructures. The complex challenges in KIBs and K-S and K-Se batteries are outlined and the role of hybrid nanostructures is discussed in detail regarding the characteristics of intercalation, conversion and alloying reactions that take place to electrochemically store K in hybrid nanostructures, highlighting their multifunctionality in addressing the challenges. Finally, outlooks are given to stimulate new ideas and insights into the future development of hybrid nanostructures for electrochemical potassium storage.
Collapse
Affiliation(s)
| | - Benxia Li
- Department of Chemistry, College of Science, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Yang Xu
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
6
|
Huang X, Sun J, Wang L, Tong X, Dou SX, Wang ZM. Advanced High-Performance Potassium-Chalcogen (S, Se, Te) Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004369. [PMID: 33448135 DOI: 10.1002/smll.202004369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/11/2020] [Indexed: 06/12/2023]
Abstract
Current great progress on potassium-chalcogen (S, Se, Te) batteries within much potential to become promising energy storage systems opens a new avenue for the rapid development of potassium batteries as a complementary option to lithium ion batteries. The discussion mainly concentrates on recent research advances of potassium-chalcogen (S, Se, Te) batteries and their corresponding cathode materials in this review. Initially, the development of cathode materials for four types of batteries is introduced, including: potassium-sulfur (K-S), potassium-selenium (K-Se), potassium-selenium sulfide (K-Sex Sy ), and potassium-tellurium (K-Te) batteries. Next, critical challenges for chalcogen-based electrodes in devices operation are summarized. In addition, some pragmatic strategies are proposed as well to relieve the low electronic conductivity, large volumetric expansion, shuttle effect, and potassium dendrite growth. At last, the perspectives on designing advanced cathode materials for potassium-chalcogen batteries are provided with the goal of developing high-performance potassium storage devices.
Collapse
Affiliation(s)
- Xianglong Huang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Jiachen Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Liping Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Xin Tong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, North Wollongong, 2500, Australia
| | - Zhiming M Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|