1
|
Matemb Ma Ntep TJ, Wahiduzzaman M, Laurenz E, Cornu I, Mouchaham G, Dovgaliuk I, Nandi S, Knop K, Jansen C, Nouar F, Florian P, Füldner G, Maurin G, Janiak C, Serre C. When Polymorphism in Metal-Organic Frameworks Enables Water Sorption Profile Tunability for Enhancing Heat Allocation and Water Harvesting Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211302. [PMID: 36897806 DOI: 10.1002/adma.202211302] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The development of thermally driven water-sorption-based technologies relies on high-performing water vapor adsorbents. Here, polymorphism in Al-metal-organic frameworks is disclosed as a new strategy to tune the hydrophilicity of MOFs. This involves the formation of MOFs built from chains of either trans- or cis- µ-OH-connected corner-sharing AlO4(OH)2 octahedra. Specifically, [Al(OH)(muc)] or MIP-211, is made of trans, trans-muconate linkers, and cis-µ-OH-connected corner-sharing AlO4(OH)2 octahedra giving a 3D network with sinusoidal channels. The polymorph MIL-53-muc has a tiny change in the chain structure that results in a shift of the step position of the water isotherm from P/P0 ≈ 0.5 in MIL-53-muc, to P/P0 ≈ 0.3 in MIP-211. Solid-state NMR and Grand Canonical Monte Carlo reveal that the adsorption occurs initially between two hydroxyl groups of the chains, favored by the cis-positioning in MIP-211, resulting in a more hydrophilic behavior. Finally, theoretical evaluations show that MIP-211 would allow achieving a coefficient of performance for cooling (COPc) of 0.63 with an ultralow driving temperature of 60 °C, outperforming benchmark sorbents for small temperature lifts. Combined with its high stability, easy regeneration, huge water uptake capacity, green synthesis, MIP-211 is among the best adsorbents for adsorption-driven air conditioning and water harvesting from the air.
Collapse
Affiliation(s)
- Tobie J Matemb Ma Ntep
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätstraße 1, D-40225, Düsseldorf, Germany
| | | | - Eric Laurenz
- Department of Heating and Cooling Technologies, Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110, Freiburg, Germany
| | - Ieuan Cornu
- Centre National de la Recherche Scientifique (CNRS), UPR3079 CEMHTI, Université d'Orléans, 1D Av. Recherche Scientifique, CEDEX 2, 45071, Orléans, France
| | - Georges Mouchaham
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France
| | - Iurii Dovgaliuk
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France
| | - Shyamapada Nandi
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France
| | - Klaus Knop
- Institut für Pharmazeutische Technologie und Biopharmazie, Heinrich-Heine-Universität Düsseldorf, Universitätstraße 1, D-40225, Düsseldorf, Germany
| | - Christian Jansen
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätstraße 1, D-40225, Düsseldorf, Germany
| | - Farid Nouar
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France
| | - Pierre Florian
- Centre National de la Recherche Scientifique (CNRS), UPR3079 CEMHTI, Université d'Orléans, 1D Av. Recherche Scientifique, CEDEX 2, 45071, Orléans, France
| | - Gerrit Füldner
- Department of Heating and Cooling Technologies, Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110, Freiburg, Germany
| | - Guillaume Maurin
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34293, Montpellier, France
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätstraße 1, D-40225, Düsseldorf, Germany
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France
| |
Collapse
|
2
|
Li R, Wang W, Shi Y, Wang CT, Wang P. Advanced Material Design and Engineering for Water-Based Evaporative Cooling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2209460. [PMID: 36638501 DOI: 10.1002/adma.202209460] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Water-based evaporative cooling is emerging as a promising technology to provide sustainable and low-cost cold to alleviate the rising global cooling demand. Given the significant and fast progress made in recent years, this review aims to provide a timely overview on the state-of-the-art material design and engineering in water-based evaporative cooling. The fundamental mechanisms and major components of three water-based evaporative cooling processes are introduced, including direct evaporative cooling, cyclic sorption-driven liquid water evaporative cooling (CSD-LWEC), and atmospheric water harvesting-based evaporative cooling (AWH-EC). The distinctive requirements on the sorbent materials in CSD-LWEC and AWH-EC are highlighted, which helps synthesize the literature information on the advanced material design and engineering for the purpose of improving cooling performance. The challenges and future outlooks on further improving the water-based evaporative cooling performance are also provided.
Collapse
Affiliation(s)
- Renyuan Li
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Wenbin Wang
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Yifeng Shi
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Chang-Ting Wang
- Department of Civil and Environmental Engineering, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Peng Wang
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Department of Civil and Environmental Engineering, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| |
Collapse
|