1
|
Abstract
In order to ensure safe working conditions for miners underground, many works are carried out in mines to strengthen and seal mining excavations. This article presents the successfully applied technology for removing water inflow from the unique Salt Mine. Failure to take such action may ultimately lead to the flooding of the “Wieliczka” Salt Mine (KSW). On the basis of the authors’ research studies, some of the implemented works at the “Wieliczka” Salt Mine are presented, the purpose of which is to better protect the mine against the risk of flooding with water. Thanks to this, the mine can safely survive for many more years. This article presents two innovative technologies in salt mines: (1) sealing of the rock mass surrounding the Kościuszko shaft casing in the “Wieliczka” Salt Mine, where jet injection was used as the basic method of making an anti-filter screen outside the shaft casing and classic injection as a supplementary method for sealing the anthropogenic embankment; (2) reconstruction of the internal pillar of safety by implementing a patented technology called “pipeline injection” on the example of the Mina cross-section, in which a catastrophic water inflow was previously created that threatened the existence of the “Wieliczka” Salt Mine. The first method consists of making an anti-filter screen, which is located outside the shaft housing. Unfortunately, it is not possible to perform injection works from inside the shaft housing, because the Kosciuszko shaft, as a ventilation shaft, must be open constantly. To solve this problem, it is designed as the main technology known as jet grouting, which is supplemented by pressure injection at a depth of up to several meters with continuous monitoring of the condition of the casing during injection works. The second example concerns the reconstruction of the internal pillar of mine safety in the area of the northern border of the salt deposit. In this case, the catastrophic hazard is documented, as evidenced by the inflow to the Mina transverse, which is located on the fourth level of the mine. This task was successfully completed by the implementation of a patented technological solution called pipeline injection, the details of which are discussed in this article.
Collapse
|
2
|
Increasing the Efficiency of Sealing the Borehole in Terms of Spacer Pumping Time. ENERGIES 2021. [DOI: 10.3390/en14206702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The tightness of a borehole is essential for its long-term durability. For this purpose, the column of the pipe is sealed with cement slurry. After contacting the slurry, mud in the borehole is removed. However, the slurry does not effectively remove the remaining drilling mud. Therefore, the annular space is cleaned with a wash. Effectively cleaning the borehole presents quite a problem, as many variables that affect the stability of the borehole need to be considered. The time of contact between the borehole and the wash is very important. On the one hand, insufficient contact time does not guarantee proper removal of the mud. On the other hand, a long contact time may destroy the wall of the borehole. To address these problems, studies were carried out to assess the effect of the wash contact time on annular space cleaning. When determining the time of washing, a compromise between effective cleaning and the stability of the borehole wall is required. In the research presented in this publication, the simplest wash was used, i.e., water. This choice was based on the objective of observing the influence of the wash time on cleaning, i.e., the preparation of the borehole for cementing. By using water, the physicochemical action of surfactants can be ignored. In order to capture changes in cleaning due to differences in contact time, a control test was performed using a pure sandstone core without mud. The effect of the wash contact time on the cleaning of the annular space was investigated by determining the adhesion of the cement sheath to the rock core. First, mud was formed on the core, and then it was removed. By comparing the obtained adhesion to the reference sample, the effectiveness of the deposit removal was determined. On the basis of this research, the optimal wash contact time was determined.
Collapse
|
3
|
Effect of Cleaning the Annular Space on the Adhesion of the Cement Sheath to the Rock. ENERGIES 2021. [DOI: 10.3390/en14165187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Drilling boreholes in gas zones and in zones with the possibility of migration or gas exhalation requires a high index of well tightness. An important parameter determining the effectiveness of sealing the annular space is the adhesion of the cement sheath to the rock formation. Low values of adhesion of the cement sheath to the rock formation and to the casing surface result in the formation of uncontrolled gas flows. The lack of adhesion also reduces the stabilization of the pipe column. To obtain the required adhesion, the annular space should be properly cleaned. Thorough removal of filter cake from the drilling fluid increases adhesion and reduces gas migration from the annular space. Therefore, in this work, the authors focus on determining the effect of cleaning the annular space on the adhesion of the cement sheath to the rock formation. The results of the research work allow for further research on the modification of spacers and cement slurries in order to obtain the required increase in adhesion. The article presents the issues related to the preparation of the borehole for cementing by appropriate cleaning of the rock formation from the residue of the mud cake. During the implementation of the works, tests of cleaning the rock surface are performed. The obtained results are correlated with the results of adhesion on the rock–cement sheath cleaned of the wash mud cake contact. When analyzing the obtained test results, a relationship is found between the cleaning of the rock surface and the adhesion of the cement sheath to it.
Collapse
|
4
|
Possibilities of Limiting Migration of Natural Gas in Boreholes in the Context of Laboratory Studies. ENERGIES 2021. [DOI: 10.3390/en14144251] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gas migration through fresh and hardened cement slurry is an ongoing problem in the oil industry. In order to eliminate this unfavourable phenomenon, research is being conducted on new compositions of slurries for gas wells. The article presents the results of research for slurries with low and high resistance to gas migration. The proper selection of the quantity and quality of components makes it possible to design slurry with the required static structural strength values. In addition, the cement sheath of such anti-migration slurry has low porosity and a very low proportion of large pore spaces. Additionally, the mechanical parameters do not decrease during long-term deposition in borehole-like conditions. By obtaining these results, it was possible to design slurry whose cement sheath has high corrosion resistance. The new slurry has a lower water-cement ratio. Additionally, GS anti-migration copolymer, anti-filter additive and latex are used. The presence of n-SiO2 aqueous solution and microcement allows for sealing the microstructure of the hardened cement slurry. Such modifications significantly improve the technological parameters of the cement slurry and the cement coat formed from it.
Collapse
|
5
|
Abstract
When designing the cement slurry for casing string cementing in geothermal boreholes, the appropriate thermal conductivity is selected. In the zone of geothermal water, where thermal energy is collected, cement slurry is used, from which the cement sheath has high thermal conductivity. On the other hand, the remaining part of the opening is sealed with slurry, from which the cement sheath will reduce thermal energy losses through appropriate thermal insulation. Cement slurry with appropriate thermal insulation includes light insulating materials. However, the use of such additives is very problematic as they are fractionated due to their low density. Therefore, measures should be taken to prevent fractionation of the cement slurry for sealing geothermal boreholes. This article presents the results of research on fractionation of cement slurries for sealing geothermal boreholes. 12 slurries were used for the tests. Six of them are based on class A cement, and six based on class G cement. This action shows the differences in fractionation depending on the binder used. However, the main area of research is determining the effectiveness of counteracting fractionation by the means used for this purpose. As a result of the conducted works, a very good improvement of the cement slurry stability is obtained after the introduction of xanthan gum, as well as filtration perlite. These measures prevent fractionation, so that the cement slurry has a homogeneous structure, and the cement sheath provides the required thermal insulation in the geothermal well.
Collapse
|
6
|
Khan MR, Ahmed H, Bari A, Rashid K, Ali SD, Zubair T, Anjum U. Data-Driven Integration to Delineate Zonal Isolation and Casing Deterioration Using Advanced Ultrasonic Technology – A Blueprint to Well Integrity Evaluation. DAY 4 THU, MARCH 25, 2021 2021. [DOI: 10.2118/204411-ms] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
State-of-the-art advanced ultrasonic measurement through the Leaky-Lamb wave imaging technique (more commonly known as the flexural waveform analysis) was introduced nearly two decades ago to expand the envelope beyond which the classical pulse-echo evaluation operated. This technology has proven to be a game-changer in cement evaluation through provision of an integrated analysis which deconvolutes beyond the casing-cement interface and investigates further into the third interface. In this work, we integrate the cutting-edge analysis provided by ultrasonic flexural mode with the classical pulse-echo approach to yield a novel well-integrity evaluation blueprint. Subsequently, it is shown how this workflow is applied to an ultra-high pressure (UHP) exploratory well for integrity evaluation which will aid in future optimization of completion strategies and constitute a continuous improvement cycle for other wells. The subject well faced potential integrity related uncertainties due to fishing and cementing related issues.
A three-tier approach was adopted to develop the blueprint, starting off with problem identification with respect to the various operations and incidents that occurred on this well. Next, based on the anticipated problems, associated solutions to evaluate the same were investigated by considering the technologies and standard procedures practiced by the industry. Finally, based on the previous two steps, a multi-physics approach was adopted that makes use of a combination of pulse-echo and flexural ultrasonic analysis, in addition to multiple well integrity workflows. Consequently, combination of flexural attenuation and acoustic impedance allows for a comprehensive evaluation of the medium behind the casing through the Solid-Liquid-Gas map. Simultaneously, it is possible to quantify casing thickness and internal radius variations through pulse-echo amplitude and resonance frequency characterization. Furthermore, the Third-Interface-Echo analysis is conducted to determine annulus geometry descriptions and produce a unique in-situ casing centralization measurement.
The proposed well integrity blueprint contains various building blocks that are key to evaluation processes and provide a linkage-based approach to delineate potential problems. Accordingly, application of this blueprint illustrated the investigative approach it delivers with respect to cement barrier classification and casing condition assessment
Collapse
|
7
|
Abstract
This article presents the results on the basis of which a new hybrid drilling washer fluid was designed. The use of fluid from such a drilling washer increases the mud-cake removal efficiency. Its operation is based on both chemical and mechanical removal of the mud cake. This article presents a group of agents and admixtures of various solid fractions, the appropriate selection of which enabled the design of a hybrid drilling washer fluid. The liquid has much better washing parameters than the drilling washers used so far. The tests were carried out in a drilling fluid flow simulator. A significant improvement in the scrubbing mud-cake removal efficiency resulted from the action of surfactants and fine-grained abrasive additives. Their proper concentration was also very important. The hybrid drilling washer fluid was designed on the basis of tests measuring the adhesion of the hardened cement slurry to the rock from which the previously produced mud was removed. In this way, the effectiveness of the washing liquids was determined. Upon analyzing the obtained results and correlating them with the reference samples, one can see a significant improvement in the efficiency of the removal of the drilling sediment by the hybrid drilling washer fluid. The hybrid drilling washer fluid is an innovative solution because it combines chemical and mechanical action in the removal of drilling fluid. Additionally, such a washing liquid has not been used so far.
Collapse
|
8
|
Abstract
In recent years, graphene-based nanomaterials have been increasingly and widely used in numerous industrial sectors. In the drilling industry, graphene oxide in cement slurry has significantly improved the mechanical parameters of cement composites and is a future-proof solution. However, prior to placing it in a borehole ring space, cement slurry must feature appropriate fluidity. Graphene oxide has a significant influence on rheological parameters. Therefore, it is necessary to study graphene oxide’s influence on the rheological parameters of cement slurries. Thus, this paper presents rheological models and the results of studies on rheological parameters. A basic cement slurry and a slurry with a latex addition were used. The latex admixture was applied at concentrations of 0.1%, 0.03%, and 0.06%. In total, studies were carried out for six slurries with graphene oxide and two basic slurries. The obtained results of studies on the slurries with graphene oxide were compared with the control slurry. It was found that the smallest graphene oxide concentration increased slurry value, some rheological parameter values, plastic viscosity, and the flow limit. Surprisingly, a concentration up to 0.03% was an acceptable value, since the increase in plastic viscosity was not excessively high, which allowed the use of cement slurry to seal the hole. Once this value was exceeded, the slurry caused problems at its injection to the borehole.
Collapse
|