1
|
A Method of Analyzing the Residual Values of Low-Emission Vehicles Based on a Selected Expert Method Taking into Account Stochastic Operational Parameters. ENERGIES 2021. [DOI: 10.3390/en14216859] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Increasing the market share of low-emission vehicles in relation to individual mobility is one of the main postulates of modern transport policy. In the discussion on low-emission and the new structure of the car fleet, the role of new vehicles is emphasized above all, ignoring the importance of the secondary market. In recent years, both in Poland and in other European Union countries, there has been a noticeable dynamic development of electromobility implementation processes in urban areas, the initial effect of which is increasing market accessibility to commercial vehicles with electric EV/BEV, hybrid HEV/PHEV and fuel cell powered FCEV. As in the case of vehicles powered by conventional ICEV fuels, also in relation to those defined as low-emission, their residual value is lost along with the operational process. Information on this variable is important both for the owner of a newly purchased vehicle, which after the period of its operation will decide to sell it as well as to the future buyer. The scientific aim of the study is to analyze the residual values of selected vehicle models from the primary and secondary market, with particular emphasis on stochastic operational phenomena. The subject of the research is to obtain extensive knowledge on the achieved changes in the residual values of low-emission vehicles in relation to ICEVs. For this purpose, a comparative analysis of the commercial program, data approximated from auction portals and own numerical modeling tool based on a neural network was performed. The research sample included, among others, selected models of passenger cars, the purchase offer of which included the choice of a drive unit powered by conventional and low-emission fuels. The use of this method allowed to answer the question whether low-emission vehicles are characterized by a greater or lesser loss of value in relation to conventionally powered vehicles ICEV.
Collapse
|
2
|
Study of Operation of the Thermoelectric Generators Dedicated to Wood-Fired Stoves. ENERGIES 2021. [DOI: 10.3390/en14196264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Thermoelectric generators are devices that harvest waste heat and convert it into useful power. They are considered as an additional power source in the domestic sector, but they can also be installed in off-grid objects. In addition, they are a promising solution for regions where there is a lack of electricity. Since biomass heating and cooking stoves are widely used, it is very appropriate to integrate thermoelectric generators with wood-fired stoves. This paper shows the experimental analysis of a micro-cogeneration system equipped with a wood-fired stove and two prototypical constructions of thermoelectric generators dedicated to mounting on the flue gas channel. The first version was equipped with one basic thermoelectric module and used to test various cooling methods, while the second construction integrated four basic thermoelectric modules and a water-cooling system. During the tests conducted, the electricity generated in the thermoelectric generators was measured by the electronic load, which allowed the simulation of various operating conditions. The results obtained confirm the possibility of using thermoelectric generators to generate power from waste heat resulting from the wood-fired stove. The maximum power obtained during the discussed combustion process was 15.4 W (if this value occurred during the entire main phase, the energy generated would be at a level of approximately 30 Wh), while the heat transferred to the water was ca. 750 Wh. Furthermore, two specially introduced factors (CPC and CPTC) allowed the comparison of developed generators, and the conclusion was drawn that both developed constructions were characterized by higher CPC values compared to available units in the market. By introducing thermoelectric modules characterized by higher performance, a higher amount of electricity generated may be provided, and sufficient levels of current and voltage may be achieved.
Collapse
|
3
|
Energy and Economic Investigation of a Biodiesel-Fired Engine for Micro-Scale Cogeneration. ENERGIES 2021. [DOI: 10.3390/en14020496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The work aims at investigating the techno-economic performance of a biodiesel micro combined heat and power (CHP) system for residential applications. The CHP unit is based on a direct-injection compression ignition engine providing 6.7 kWel and 11.3 kWth. A 0D model is developed and validated to characterise the behaviour of the biodiesel-fired engine at full and partial load in terms of efficiency, fuel consumption, and emissions. Furthermore, non-dimensional polynomial correlations are proposed to foresee the performance of biodiesel-fuelled engines for micro-CHP applications at partial loads. Afterwards, the CHP system is adopted to satisfy the electric and thermal demand of domestic users in Southern Italy. To this purpose, a parametric analysis is performed considering a different number of apartments and operating strategies (electric-driven and thermal-driven). A bi-variable optimisation based on the primary energy saving (PES) index and payback period (PBT) permits selecting the thermal-driven strategy and five apartments as the most suitable solution. The optimal PBT and PES are equal to 5.3 years and 22.4%, respectively. The corresponding annual thermal self-consumption reaches 81.3% of the domestic request, and the thermal surplus is lower than 8%. Finally, a sensitivity analysis is adopted to define the influence of the costs of energy vectors and a cogeneration unit on the economic feasibility of the biodiesel CHP system. The analysis highlights that the investigated apparatus represents an attractive option to satisfy the energy requests in micro-scale applications, providing valuable energy and economic advantages compared to traditional energy production.
Collapse
|
4
|
Monofacial and Bifacial Micro PV Installation as Element of Energy Transition—The Case of Poland. ENERGIES 2021. [DOI: 10.3390/en14020499] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The several government subsidies available in Poland contributed to an increased interest in PV installations. Installed PV capacity increased from 100 MW in 2016 up to 2682.7 MW in July 2020. In 2019 alone, 104,000 microinstallations (up to 50 kWp) were installed in Poland. The paper determines the energy gain and the associated reduction of CO2 emissions for two types of solar installation located in Poland. The monofacial solar modules with a power of 5.04 kWp (located in Leki) and bifacial solar modules with a power of 6.1 kWp (located in Bydgoszcz). Both installations use mono-crystalline Si-based 1st generation PV cells. With comparable insolation, a bifacial installation produces approx. 10% (for high insolation) to 28% (for low insolation) more energy than a monofacial PV installation. Avoided annual CO2 emission in relation to the installation capacity ranges from 0.58 to 0.64 Mg/kWp for monofacial and from 0.68 to 0.74 Mg/kWp for bifacial and is on average approx. 16% higher for bifacial installations. Cost-benefit analyses were made. For different electricity prices, the NPV for monofacial and bifacial was determined.
Collapse
|
5
|
Techno-Economic Assessment of Mobilized Thermal Energy Storage System Using Geothermal Source in Polish Conditions. ENERGIES 2020. [DOI: 10.3390/en13133404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The paper considers technical and economic possibilities to provide geothermal heat to individual recipients using a mobile thermal storage system (M-TES) in Polish conditions. The heat availability, temperature and heat cost influence the choice of location—Bańska Niżna, near Zakopane in the southern part of the Poland. The indirect contact energy storage container was selected with phase change material characterized by a melting temperature of 70 °C and a heat storage capacity of 250 kJ/kg, in the amount of 800 kg. The economic profitability of the M-TES system (with a price per warehouse of 6000 EUR, i.e., a total of 12,000 EUR—two containers are needed) can be achieved for a heat demand of 5000 kWh/year with the price of a replaced heat source at the level of 0.21 EUR/kWh and a distance between the charging station and building (heat recipient) of 0.5 km. For the heat demand of 15,000 kWh/year, the price for the replaced heat reached EUR 0.11/kWh, and the same distance. In turn, for a demand of 25,000 kWh/year, the price of the replaced heat source reached 0.085 EUR/kWh. The distance significantly affected the economic profitability of the M-TES system—for the analyzed case, a distance around 3–4 km from the heat source should be considered.
Collapse
|