1
|
Hoang AT, Nguyen XP, Duong XQ, Ağbulut Ü, Len C, Nguyen PQP, Kchaou M, Chen WH. Steam explosion as sustainable biomass pretreatment technique for biofuel production: Characteristics and challenges. BIORESOURCE TECHNOLOGY 2023; 385:129398. [PMID: 37385558 DOI: 10.1016/j.biortech.2023.129398] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023]
Abstract
The biorefining process of lignocellulosic biomass has recently emerged as one of the most profitable biofuel production options. However, pretreatment is required to improve the recalcitrant lignocellulose's enzymatic conversion efficiency. Among biomass pretreatment methods, the steam explosion is an eco-friendly, inexpensive, and effective approach to pretreating biomass, significantly promoting biofuel production efficiency and yield. This review paper critically presents the steam explosion's reaction mechanism and technological characteristics for lignocellulosic biomass pretreatment. Indeed, the principles of steam explosion technology for lignocellulosic biomass pretreatment were scrutinized. Moreover, the impacts of process factors on pretreatment efficiency and sugar recovery for the following biofuel production were also discussed in detail. Finally, the limitations and prospects of steam explosion pretreatment were mentioned. Generally, steam explosion technology applications could bring great potential in pretreating biomass, although deeper studies are needed to deploy this method on industrial scales.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam
| | - Xuan Phuong Nguyen
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
| | - Xuan Quang Duong
- Institute of Mechanical Engineering, Vietnam Maritime University, Haiphong, Viet Nam
| | - Ümit Ağbulut
- Department of Mechanical Engineering, Faculty of Engineering, Duzce University, 81620, Düzce, Türkiye
| | - Christophe Len
- PSL Research University, Chimie ParisTech, CNRS, Paris Cedex 05, France
| | - Phuoc Quy Phong Nguyen
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
| | - Mohamed Kchaou
- Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 1, Bisha, Saudi Arabia
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| |
Collapse
|
2
|
Bakar NAA, Roslan AM, Hassan MA, Rahman MDA, Mohamad R, Ibrahim KN. Structural modification of empty and partially filled paddy grain through hydrothermal pre‐treatment as a novel substrate for fermentable glucose production. STARCH-STARKE 2022. [DOI: 10.1002/star.202100299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nurul Ain Abu Bakar
- Department of Bioprocess Technology Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Serdang Selangor 43400 Malaysia
- Agrobiodiversity and Environment Research Centre Malaysian Agriculture Research and Development Institute Serdang Selangor 43400 Malaysia
| | - Ahmad Muhaimin Roslan
- Department of Bioprocess Technology Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Serdang Selangor 43400 Malaysia
- Biopolymers and Derivatives Laboratory Institute of Tropical Forestry and Forest Product Universiti Putra Serdang Selangor 43400 Malaysia
| | - Mohd Ali Hassan
- Department of Bioprocess Technology Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Serdang Selangor 43400 Malaysia
| | | | - Rozyanti Mohamad
- Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988 Bandar Vendor, Taboh Naning Universiti Kuala Lumpur Alor Gajah Melaka 78000 Malaysia
| | - Khairul Nadiah Ibrahim
- Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988 Bandar Vendor, Taboh Naning Universiti Kuala Lumpur Alor Gajah Melaka 78000 Malaysia
| |
Collapse
|
3
|
De-Escalation of Saccharification Costs through Enforcement of Immobilization of Cellulase Synthesized by Wild Trichoderma viride. Catalysts 2022. [DOI: 10.3390/catal12060659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The economic uncertainty associated with cellulosic bioethanol can be overcome through the inclusion of cheap substrates and methodologies that can extend the shelf life of cellulolytic enzymes. In this study, wild Trichoderma viride was used to produce cellulases, media formulation studies were conducted to enhance the cellulase production further and immobilization strategies were tested for stable cellulase–iron oxide magnetic nanoparticle coupling. Out of the seven different production media designed, media containing glucose, wheat bran, cellulose and corn steep liquor supported the highest biomass growth (60 Packed cell volume) and cellulase formation (7.4 U/mL), and thus was chosen for the fiscal analysis at a larger scale (1000 m3). The profitability of the cellulase production process was assessed to be 20.86%, considering both the capital expenditure and operating expenses. Further, the effect of cost of different carbon sources, nitrogen sources and cellulase yields on the annual operating costs was explored, which led to the choice of delignified sugarcane bagasse, corn steep liquor and productivity levels to be respective decisive factors of the overall cost of the cellulase production. Likewise, the break-even period of such a large-scale operation was gauged given the market price of cellulases at USD 17 for 105 U of cellulases. Moreover, enzyme immobilization led to enhanced cellulase shelf life and ultimately contributed toward saccharification cost reduction.
Collapse
|
4
|
Kee SH, Chiongson JBV, Saludes JP, Vigneswari S, Ramakrishna S, Bhubalan K. Bioconversion of agro-industry sourced biowaste into biomaterials via microbial factories - A viable domain of circular economy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116311. [PMID: 33383425 DOI: 10.1016/j.envpol.2020.116311] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/25/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Global increase in demand for food supply has resulted in surplus generation of wastes. What was once considered wastes, has now become a resource. Studies were carried out on the conversion of biowastes into wealth using methods such as extraction, incineration and microbial intervention. Agro-industry biowastes are promising sources of carbon for microbial fermentation to be transformed into value-added products. In the era of circular economy, the goal is to establish an economic system which aims to eliminate waste and ensure continual use of resources in a close-loop cycle. Biowaste collection is technically and economically practicable, hence it serves as a renewable carbon feedstock. Biowastes are commonly biotransformed into value-added materials such as bioethanol, bioplastics, biofuels, biohydrogen, biobutanol and biogas. This review reveals the recent developments on microbial transformation of biowastes into biotechnologically important products. This approach addresses measures taken globally to valorize waste to achieve low carbon economy. The sustainable use of these renewable resources is a positive approach towards waste management and promoting circular economy.
Collapse
Affiliation(s)
- Seng Hon Kee
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Justin Brian V Chiongson
- Department of Chemistry, College of Liberal Arts, Sciences, and Education, University of San Agustin, Iloilo City, Philippines
| | - Jonel P Saludes
- Department of Chemistry, College of Liberal Arts, Sciences, and Education, University of San Agustin, Iloilo City, Philippines; Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City, Philippines; Balik Scientist Program, Philippine Council for Health Research and Development, Department of Science and Technology, Taguig, Philippines
| | - Sevakumaran Vigneswari
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore, 117581, Singapore
| | - Kesaven Bhubalan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, 11700, Penang, Malaysia.
| |
Collapse
|