1
|
Degree of Biomass Conversion in the Integrated Production of Bioethanol and Biogas. ENERGIES 2021. [DOI: 10.3390/en14227763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The integrated production of bioethanol and biogas makes it possible to optimise the production of carriers from renewable raw materials. The installation analysed in this experimental paper was a hybrid system, in which waste from the production of bioethanol was used in a biogas plant with a capacity of 1 MWe. The main objective of this study was to determine the energy potential of biomass used for the production of bioethanol and biogas. Based on the results obtained, the conversion rate of the biomass—maize, in this case—into bioethanol was determined as the efficiency of the process of bioethanol production. A biomass conversion study was conducted for 12 months, during which both maize grains and stillage were sampled once per quarter (QU-I, QU-II, QU-III, QU-IV; QU—quarter) for testing. Between 342 L (QU-II) and 370 L (QU-I) of ethanol was obtained from the organic matter subjected to alcoholic fermentation. The mass that did not undergo conversion to bioethanol ranged from 269.04 kg to 309.50 kg, which represented 32.07% to 36.95% of the organic matter that was subjected to the process of bioethanol production. On that basis, it was concluded that only two-thirds of the organic matter was converted into bioethanol. The remaining part—post-production waste in the form of stillage—became a valuable raw material for the production of biogas, containing one-third of the biodegradable fraction. Under laboratory conditions, between 30.5 m3 (QU-I) and 35.6 m3 (QU-II) of biogas per 1 Mg of FM (FM—fresh matter) was obtained, while under operating conditions, between 29.2 m3 (QU-I) and 33.2 m3 (QU-II) of biogas was acquired from 1 Mg of FM. The Biochemical Methane Potential Correction Coefficient (BMPCC), which was calculated based on the authors’ formula, ranged from 3.2% to 7.4% in the analysed biogas installation.
Collapse
|
2
|
Silica/Lignin Carrier as a Factor Increasing the Process Performance and Genetic Diversity of Microbial Communities in Laboratory-Scale Anaerobic Digesters. ENERGIES 2021. [DOI: 10.3390/en14154429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The article aims to present results of research on anaerobic digestion (AD) of waste wafers (WF-control) and co-substrate system–waste wafers and cheese (WFC-control), combined with digested sewage sludge, as inoculum. The purpose of this paper is to confirm the outcome of adding silica/lignin (S/L; 4:1) material, as a microbial carrier, on the process performance and genetic diversity of microbial communities. The experiment was conducted in a laboratory under mesophilic conditions, in a periodical operation mode of bioreactors. Selected physicochemical parameters of the tested carrier, along with the microstructure and thermal stability, were determined. Substrates, batches and fermenting slurries were subjected to standard parameter analysis. As part of the conducted analysis, samples of fermented food were also tested for total bacterial count, dehydrogenase activity. Additionally, DNA extraction and next-generation sequencing (NGS) were carried out. As a result of the conducted study, an increase in the volume of produced biogas was recorded for samples fermented with S/L carrier: in the case of WF + S/L by 18.18% to a cumulative biogas yield of 833.35 m3 Mg−1 VS, and in the case of WFC + S/L by 17.49% to a yield of 950.64 m3 Mg−1 VS. The largest total bacterial count, during the process of dehydrogenase activity, was maintained in the WFC + S/L system. The largest bacterial biodiversity was recorded in samples fermented with the addition of cheese, both in the case of the control variant and in the variant when the carrier was used. In contrast, three phyla of bacteria Firmicutes, Proteobacteria and Actinobacteria predominated in all experimental facilities.
Collapse
|
3
|
Rapid Biochemical Methane Potential Evaluation of Anaerobic Co-Digestion Feedstocks Based on Near Infrared Spectroscopy and Chemometrics. ENERGIES 2021. [DOI: 10.3390/en14051460] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biochemical methane potential (BMP) of anaerobic co-digestion (co-AD) feedstocks is an essential basis for optimizing ratios of materials. Given the time-consuming shortage of conventional BMP tests, a rapid estimated method was proposed for BMP of co-AD—with straw and feces as feedstocks—based on near infrared spectroscopy (NIRS) combined with chemometrics. Partial least squares with several variable selection algorithms were used for establishing calibration models. Variable selection methods were constructed by the genetic simulated annealing algorithm (GSA) combined with interval partial least squares (iPLS), synergy iPLS, backward iPLS, and competitive adaptive reweighted sampling (CARS), respectively. By comparing the modeling performances of characteristic wavelengths selected by different algorithms, it was found that the model constructed using 57 characteristic wavelengths selected by CARS-GSA had the best prediction accuracy. For the validation set, the determination coefficient, root mean square error and relative root mean square error of the CARS-GSA model were 0.984, 6.293 and 2.600, respectively. The result shows that the NIRS regression model—constructed with characteristic wavelengths, selected by CARS-GSA—can meet actual detection requirements. Based on a large number of samples collected, the method proposed in this study can realize the rapid and accurate determination of the BMP for co-AD raw materials in biogas engineering.
Collapse
|