Carella A, D'Orazio A. The heat pumps for better urban air quality
✰.
SUSTAINABLE CITIES AND SOCIETY 2021;
75:103314. [PMID:
34549022 PMCID:
PMC8445611 DOI:
10.1016/j.scs.2021.103314]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 05/06/2023]
Abstract
Strict restrictions to halt the spread of COVID-19 provided an opportunity to quantify the contribution of different pollution agents. We analyze the concentrations of pollutants recorded in Rome during the lockdown periods for the containment of the spread of Covid 19, compared with those of other periods and years. We recorded a significant contribution attributable to heating systems powered by fuel. Thus, we propose the replacement of existing boilers for heating and drinking hot water (DHW) production systems, with air / water heat pumps, as an intervention to improve urban air quality. We analyze the replacement scenarios, within the entire residential building stock in the Municipality of Rome, in terms of emissions reduction, primary energy savings and reduced CO2 production. Results show significant reductions in concentrations. Reduction in primary energy consumption varies between 12% and 56% for various scenarios, different for outdoor temperatures and mix of electricity generation. The intervention on the urban scale can reduce air pollution on a long-term basis, implying significant reductions of polluting emissions in urban areas, and entailed reduced energy (and therefore environmental) costs, with a significant step towards sustainable cities.
Collapse